WHOLENEW DIMENSION

Effective Water Treatment for Optimizing Enhanced Oil Recovery (EOR) Production

Matthew Goysich Sr. Engineer- Technical Solutions, North American and Asia

Why EOR?

- Enhanced Oil Recovery can unlock 300 billion additional barrels of oil¹
- Represents almost \$15 Trillion Dollars of what was previously deemed "Non Recoverable" ²

¹ According to the International Energy Agency ² Based upon \$50 per barrel

EOR Methods and Challenges

- Energy is typically input into the reservoir in the form of heat (SAGD, CSS) or chemical (polymer, SP, or ASP) introduced into reservoir
- EOR production methods present unique water treatment challenges
- Water used for EOR has to be properly conditioned so that it is a cost effective process. This requires reliable water treatment.

Chemical Flood Challenges (CEOR)

Polymer Flood, SP, ASP Flood Produced Water

- Requires clean (SOFT) water to effectively hydrolyze the polymer into water phase for re-injection into the reservoir
- Varying viscosities and complex chemical emulsions make water treatment difficult
- Parameters that affect treatment
 - -Viscosity
 - Polymer Concentration
 - -Oil (type and concentration)
 - T.S.S.
 - -pH
 - Surfactant Concentration

Viscosity Modification Affects Separation of Oil Droplets

• Time required for a 50 micron sized oil droplet to rise approximately 1 foot

Time (minutes)	Viscosity (cP)
37	1
110	3
220	6

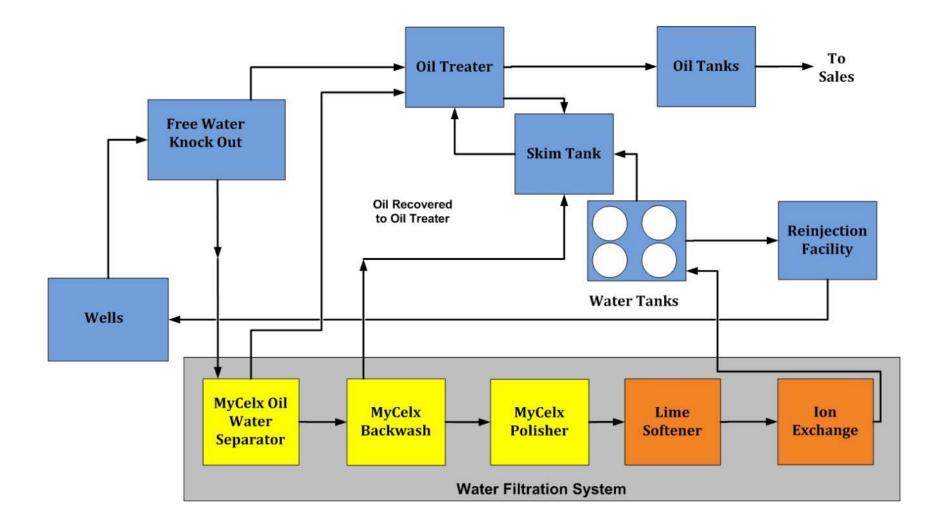
• Assume a density of 0.9 g/cm2 Droplet size of 50 micron

Surfactant and pH Modification

Polymer Injection Issues

Case Study Site #1

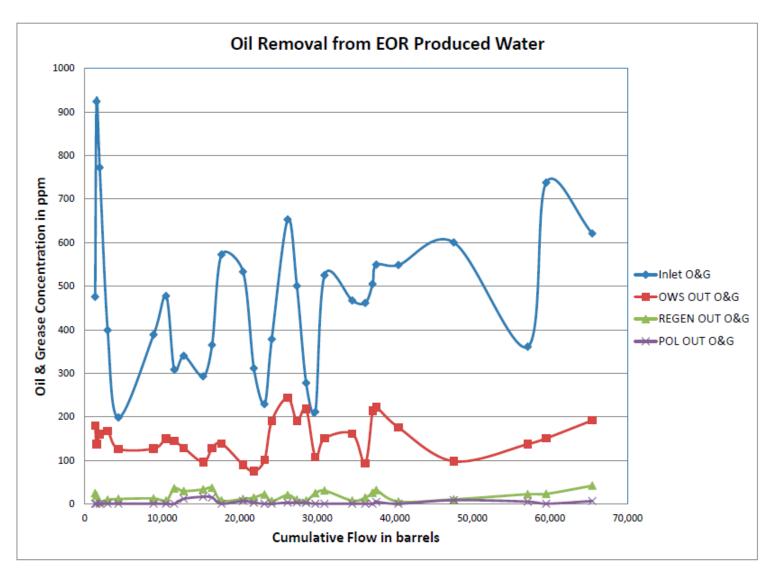
- End User Parameters
 - Inlet OIW: 500 mg/L to 2500 mg/L
 - Inlet T.S.S.: 100 400 mg/L
 - Inlet Viscosity: 2 cP 7 cP
 - Flow Rate (Pilot) 2800 bbl/day (~ 50 gpm)
 - Oil API = 25 27
- Discharge Requirement(s):
 - OIW: less than or equal to 10 mg/L
 - T.S.S.: less than or equal 10 mg/L



System Design

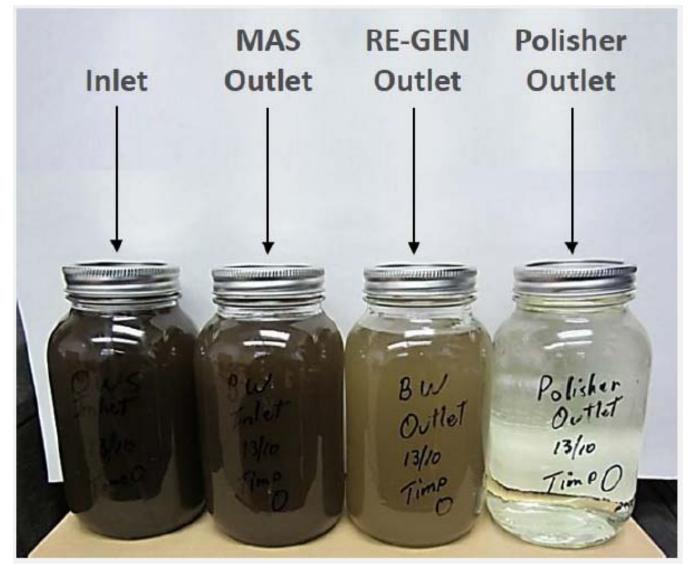
- Separation >50 micron
- Coalescing internals
- Sludge clarifier
- Inlet conditions, O&G <
- Deep bed filtration of O&G, TSS and oily solids.
- Surface modified granular media
 - Inlet conditions, O&G < 1,000 ppm, TSS <1,000 ppm
 - 95% removal O&G > 5 microns, TSS > 2 microns
 - Cartridge based filtration of O&G, TSS and oily solids.
 - Surface modified cartridges
 - Inlet conditions, O&G < 100 ppm, TSS <100 ppm</p>
 - Polish remaining O&G and TSS to below readable limits

Polymer Flood Process Layout


Analysis and Characterization

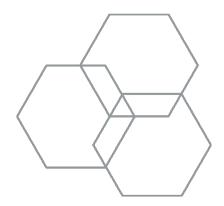
- Onsite Analysis:
 - Hach DR-2800 for OIW and T.S.S.
 - Viscometer: monitor viscosity of produced water

- Third Party Analysis:
 - Gravimetric Hexane Extractions to correlate to onsite O&G readings
 - APHA 2540 D: Total Suspended Solids
 - API RP63 Residual Polymer Concentration

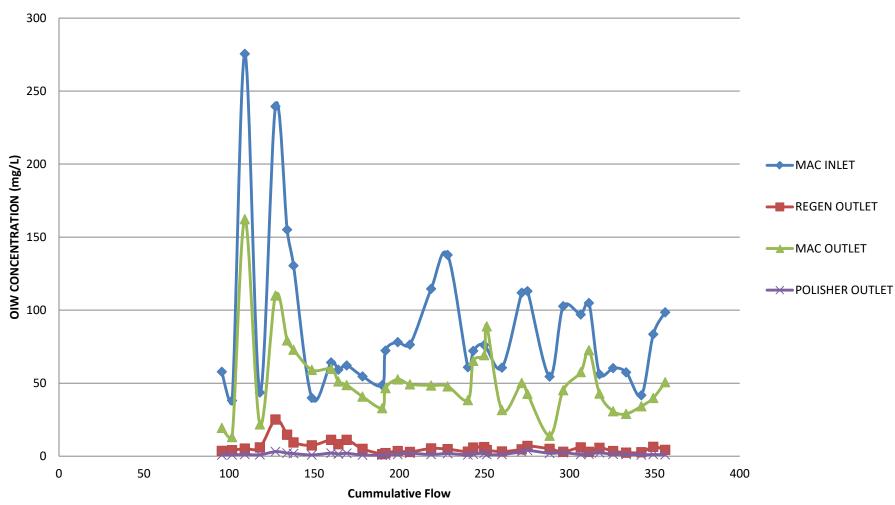


Field Data

Treatment Samples


Recovered Oil

Case Study Site #2


- End User Parameters
 - Inlet OIW: 100 300 mg/L
 - Inlet T.S.S.: 20 mg/L
 - Inlet Viscosity: 2 cP 12 cP
 - Flow Rate (Pilot) ~ 25 gpm
 - Oil API = 15 17
- Discharge Requirement(s):
 - OIW: less than or equal to 10 mg/L
 - T.S.S.: less than or equal 10 mg/L

Field Data

Polymer Flood Oil Removal

Field Data

	MIN (mg/L)	MAX (mg/L)	AVERAGE (mg/L)	OVERALL EFFICIENCY		
MAC INLET	38.7	275.5	88.2			
MAC OUTLET	13.1	162.3	56.6	98.2%		
REGEN OUTLET	1.4	25.1	5.9			
POLISHER OUTLET	0.7	4	1.6			

Field Data, Cont.

<u>Oil in Water Readings (OIW) mg/L</u>				<u>Oil Removal Efficiency</u>			<u>Viscosity</u>	<u>Polymer</u> <u>Concentra</u> <u>tion (mg/L)</u>
MAC INLET	MAC OUTLET	REGEN OUTLET	POLISHER OUTLET	MAC	REGEN	Polisher	сР	
275.5	162.3	5.2	1.2	41.1%	96.8%	76.9%	4.7	N/A
57.4	29	2.4	1.2	49.5%	91.7%	50.0%	8.2	818.6
98.5	50.7	4.3	1	48.5%	91.5%	76.7%	13.4	1013.35
84.5	41.2	13.4	5.3	51.2%	67.5%	60.4%	3.4	N/A

Treatment samples

Conclusions

- CEOR relies on the end users ability to appropriately condition the water being used for injection
- Without reliable water treatment most CEOR projects will not be economically viable

Produced Water Treatment (Oil and Particulate Separation)

Injection into Producing Formation

CEOR PROCESS OVERVIEW CYCLE Water Conditioning Softening/ Ion Removal

Chemical Addition

Polymer, Surfactant and Alkali incorporation