Evaluating economic tradeoffs in produced water treatment for CEOR flood development

Holly Johnson Churman, Water Standard
Lisa Henthorne, Water Standard
Robert Fortenberry, Ultimate EOR Services
Mojdeh Delshad, Ultimate EOR Services
Agenda

• Introduction
• Economic Screening Workflow Model
 • Purpose
 • Technical Basis
 • Economic Basis
• Case Study
 • SP Flood
 • ASP Flood
• Summary
• Conclusions
Chemical EOR

- **CEOR**: injection of fluids and chemicals which mobilize trapped oil in reservoirs and improve recovery factors.
CEOR Floods and Water Treatment

CEOR Flood Types

- **Examples:**
 - Polymer
 - Surfactant Polymer
 - Alkali Surfactant Polymer
 - Surfactant Gas
 - Gravity Stable Surfactant
 - Alkaline Co-Solvent Polymer
 - Hybrid processes

- **Other Considerations**
 - Advanced CEOR chemicals (temperature, salinity tolerance)

Water Processes

- **Examples:**
 - De-oiling
 - Filtration
 - Desalination
 - Softening

- **Other Considerations:**
 - Ionic Customization
 - pH Alteration
 - Produced Water Reinjection
Tradeoffs

ASP Flood
- Uses alkali to generate soaps from active oil in order to lower interfacial tension
- Lower surfactant retention
- Lower chemical concentrations
- More complex process

SP Flood
- Relies only on surfactants to lower interfacial tension
- Higher surfactant retention
- Higher chemical concentrations
- Less complex process

Water treatment can improve CEOR program economics (Henthorne 2011)
Chemical EOR Challenges

• Complexity
 • Reservoir Uncertainty
 • Water Quality and Quantity
 • Water Treatment Needs
 • Water / Reservoir Compatibility

• Economics
 • CEOR applications are costly
 • Declining oil prices are a hurdle to implementation

How can we enable CEOR to proceed in a challenging economic landscape?
A New Perspective

- CEOR Options are Increasing
 - Reservoir modeling techniques are improving
 - New CEOR chemicals are emerging, e.g. salinity, temperature tolerant
 - CEOR chemical prices are decreasing
 - Water treating technology is improving
 - Water treating costs are declining
 - Complex water sources, particularly produced water, are becoming more accessible for CEOR applications

A unified screening tool merging reservoir simulation with water treatment can enable operators to identify technically sound, cost-effective CEOR strategies
Economic Screening Workflow Model

- **Purpose:** Enable operators to evaluate CEOR decisions on the basis of Net Present Value (NPV)
- **Approach:**
 - Evaluate water treatment decisions in oilfield operations
 - Couple water treatment decisions with reservoir simulation, using UTCHEM to predict oilfield performance & NPV economics
- **Reservoir Performance:**
 - Evaluate performance of range of CEOR flood types in targeted fields
- **Water Treatment:**
 - Input source water, treatment goals; output indicative water treatment strategy, CAPEX and OPEX
- **Economic Evaluation:**
 - Calculate $/bbl of injection fluid based on CAPEX, OPEX, taxation, discounting, escalating costs, revenues and discount rates
- **Compare NPV among options to identify optimal CEOR strategy**
Technical Basis

Reservoir Simulation

- Reservoir Properties:
 - Rock types, Petrophysical Properties
- Fluid Saturations
- Well Spacing
- Injection Schedules
- Project Duration
- Predicted Performance in UTCHEM reservoir simulator

Water Treating

- Water Source:
 - Aquifer, Seawater, Produced Water
- Source Water Quality
 - Oil, Solids, Salinity, Hardness
- Treated Water Quality Goals
 - Oil, Solids, Salinity, Hardness
- Location
 - Onshore, Offshore
- Water Treatment Strategy
 - Range of pretreatment, oil reduction, ion removal, technologies
Economic Basis

Reservoir Mechanistic

- CAPEX
 - Wells
 - Mixing facilities
 - Production treatment
- OPEX
 - Well maintenance
 - CEOR chemicals
- Taxes
- Depreciation
- Inflation

Water Treating

- CAPEX
 - Indicative equipment selection:
 - Oil removal
 - Filtration
 - Desalination
 - Softening
- OPEX
 - Labor
 - Electricity
 - Water treating chemicals
 - Repairs and consumables

Total CAPEX, OPEX, taxation, revenue applied to complete scenarios. Variable inputs allow for sensitivity analysis.
Case Study: Overview

- Region: Middle East (hypothetical scenario)
- Reservoir Type: Sandstone
- Oil Saturation: 50% after primary recovery
- Pattern Economics:
 - Single pattern – assumed in a multi-pattern rollout
 - Assume 2 new wells drilled per pattern for economics
- Max Injection Flow Rate In Pattern: 6,000 bbls/day
- Available Water Supply: Produced water
- Oil Price: $45/bbl
- Temperature ~ 50°C
Reservoir Model

- Initial Pressure:
 - 2,000 psi
- Heterogeneity:
 - 0.65 Dykstra Parsons Coeff.
- Mean Permeability:
 - 200 mD
- Remaining Oil:
 - 1.5 MM bbls
 - 2 cP
- Topside Injector:
 - Max 2,000 bbls/day
 - Max 3,900 psi
- Pattern Spacing 20 Acres
Case Study: Objectives and Details

• Objective:
 • Evaluate performance and economics of three floods to identify optimized solution:
 • Waterflood
 • SP Flood
 • ASP Floods

• Injection Plan
 • 0.30 PV SP/ASP Slug
 • Polymer drive until NPV stops increasing

• Waterflood
 • De-oil and filter produced brine

• SP
 • 0.75% surfactant
 • 0.28 mg surf /g rock retained
 • De-oil and filter produced brine

• ASP
 • 0.30 % surfactant
 • 0.12 mg surf /g rock retained
 • De-oil, filter, and soften produced brine
Technical Basis: Water

• Source: Produced Water

Water Quality Assumptions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Source Quality</th>
<th>Treated Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Source Quality</td>
<td>Waterflood</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
<td>35</td>
<td>35</td>
</tr>
<tr>
<td>Oil</td>
<td>mg/L</td>
<td>100</td>
<td><5</td>
</tr>
<tr>
<td>Solids</td>
<td>mg/L</td>
<td>20</td>
<td><5</td>
</tr>
<tr>
<td>Salinity</td>
<td>mg/L</td>
<td>50,000</td>
<td>50,000</td>
</tr>
<tr>
<td>Hardness</td>
<td>mg/L</td>
<td>3,000</td>
<td>3,000</td>
</tr>
</tbody>
</table>

• Location: Onshore
• Total Pattern Injection Rate: Max 6,000 bbls/day
Water Treating Strategies

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waterflood De-oil/Filter</th>
<th>SP De-oil/Filter</th>
<th>ASP De-oil/Filter/Soften</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>IGF + Walnut Shell Filtration</td>
<td>IGF + Walnut Shell Filtration</td>
<td>IGF + Walnut Shell Filtration</td>
</tr>
<tr>
<td>Solids</td>
<td>Membrane Filtration</td>
<td>Membrane Filtration</td>
<td>Membrane Filtration</td>
</tr>
<tr>
<td>Desalination</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Softening</td>
<td>-</td>
<td>-</td>
<td>Nanofiltration</td>
</tr>
</tbody>
</table>
CEOR Chemical Estimates

<table>
<thead>
<tr>
<th>Commodity</th>
<th>ASP Slug Concentration</th>
<th>SP Slug Concentration</th>
<th>Cost per Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>-</td>
<td>-</td>
<td>$0.05/bbl</td>
</tr>
<tr>
<td>Alkali</td>
<td>20,000</td>
<td>-</td>
<td>$0.17/lb</td>
</tr>
<tr>
<td>NaCl</td>
<td>-</td>
<td>20,000</td>
<td>$0.05/lb</td>
</tr>
<tr>
<td>Polymer</td>
<td>2,000</td>
<td>2,000</td>
<td>$1.00/lb</td>
</tr>
<tr>
<td>Surfactant</td>
<td>3,000</td>
<td>7,500</td>
<td>$2.50/lb</td>
</tr>
<tr>
<td>Cosolvent</td>
<td>5,000</td>
<td>5,000</td>
<td>$0.75/lb</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Waterflood De-oil/Filter</th>
<th>SP De-oil/Filter</th>
<th>ASP De-oil/Filter/Soften</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAPEX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wells</td>
<td>$4 MM</td>
<td>$4 MM</td>
<td>$4 MM</td>
</tr>
<tr>
<td>Polymer Facility</td>
<td>-</td>
<td>$5 MM</td>
<td>$5 MM</td>
</tr>
<tr>
<td>Surfactant Facility</td>
<td>-</td>
<td>$3.7 MM</td>
<td>$3.7 MM</td>
</tr>
<tr>
<td>Water Treating Facility</td>
<td>$27,000</td>
<td>$27,000</td>
<td>$4.5 MM</td>
</tr>
<tr>
<td>OPEX</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CEOR Chemicals</td>
<td>$0.06 / bbl injected</td>
<td>$10.04 / bbl injected</td>
<td>$5.86 / bbl injected</td>
</tr>
<tr>
<td>Overhead</td>
<td>0.10 * CAPEX</td>
<td>0.10 * CAPEX</td>
<td>0.10 * CAPEX</td>
</tr>
<tr>
<td>Labor, Electricity, etc.</td>
<td>Included in Overhead</td>
<td>Included in Overhead</td>
<td>Included in Overhead</td>
</tr>
</tbody>
</table>
Oil Recovery

Barrels of Oil Produced Thousands

Days

WF
SP
ASP

0 500 1000 1500 2000 2500 3000

THE PRODUCED WATER SOCIETY SEMINAR 2016
NPV for $45/bbl Oil

Net Present Value Millions

Years of Flood Elapsed

ASP

SP

WF

$7.52

$5.09

$3.96

$(-20.00)

$(-15.00)

$(-10.00)

$(-5.00)

$0.00

$5.00

$10.00

$15.00

$20.00

0

1

2

3

4
Summary and Conclusions

• In the current oil price landscape, new strategies are needed to enable operators to evaluate and enable CEOR.

• A model has been developed to leverage advancements in reservoir engineering and water treating technology to improve CEOR program planning.

• A case study was implemented to demonstrate tradeoffs between flood performance and NPV-based economics.

• Results suggest that under certain conditions increased water treatment can allow for use of more cost effective CEOR processes.
THANK YOU

Questions?