

PRODUCED WATER CHALLENGES IN A LIMITED REUSE, LIMITED DISPOSAL ENVIRONMENT RICK McCURDY

OPTIONS FOR PRODUCED WATER WITH` NO PLACE TO GO

- Keep It In The Reservoir
 >Don't Produce It
- Industry Cooperation
 Share It With Your Friends
- Beneficial Reuse
 >Keep It Above Ground

Keep It In The Reservoir

DON'T PRODUCE IT

KEEP IT IN THE RESERVOIR

- Restrict Water Production Chemically
 - > Blocking Gels
 - > Silicate Gels
 - > Cement

- > Relative Permeability Modifiers ——

Separate and Re-inject

- > Generally, not in the same reservoir
- Most common to set a packer and inject into a non-productive, upper zone via the annulus

Issues

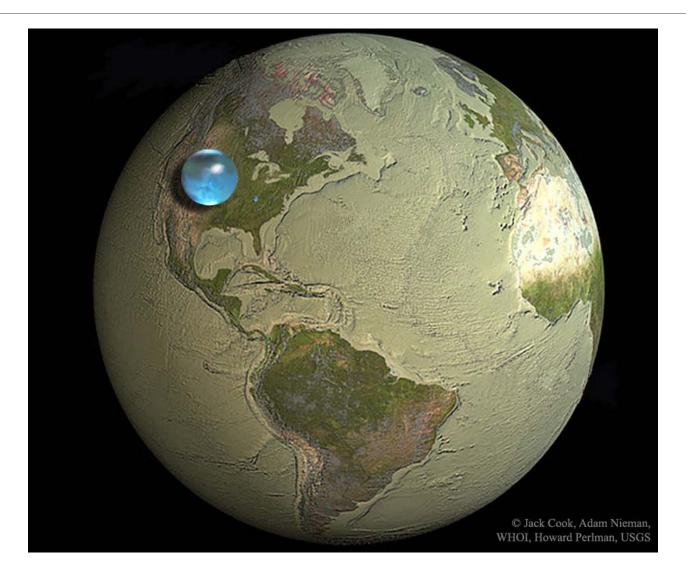
- > Most commonly used on vertical
- conventional wells with high permeability.
- Permanent blockage possibility to block oil and gas as well.
- Can result in a near wellbore "doughnut" of water hindering hydrocarbon movement.
- > Still requires a disposal zone
- Issue with necessary downhole tubing and jewelry

Industry Cooperation

SHARE IT WITH YOUR FRIENDS

INDUSTRY COOPERATION

- Industry peers share produced water with one another so as to minimize produced water disposal
 - > Simple concept, yet not so simple to enact
 - Requires willingness to share infrastructure locations and capabilities
 - Requires willingness to share drilling and completion schedules with your peers
 - May require new infrastructure (pipelines, impoundments, etc)
 - In many areas, may require new state regulations regarding the movement of produced water from one operator to another or from an operator to a third part and then to another operator
 - Potential water compatibility issues need to be reviewed up front


Beneficial Reuse

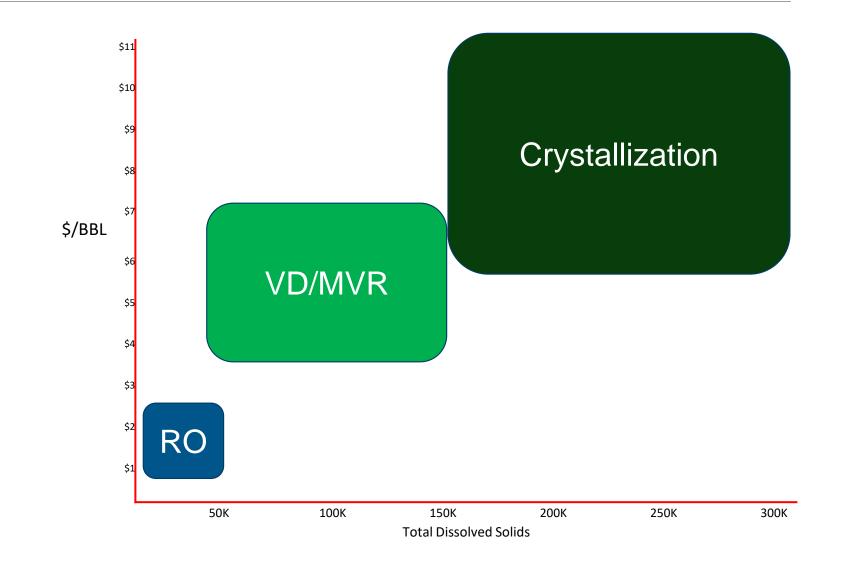
KEEP IT ABOVE GROUND

BENEFICIAL REUSE

• Treatment of produced water to recover some quantity of fresh water, plus potentially other usable products

BUT FIRST

BENEFICIAL REUSE


- Treatment of produced water to recover some quantity of fresh water, plus potentially other usable products
- Conventional Technologies
 - > Reverse Osmosis
 - Inefficient in brines with total dissolved solids (tds) > 50,000 mg/l
 - > Vapor Distillation, Mechanical Vapor Recompression
 - Generally best with brines with tds between 50,000 and 150,000 mg/l
 - > Crystallization
 - No tds limit

• Some common issues with these technologies

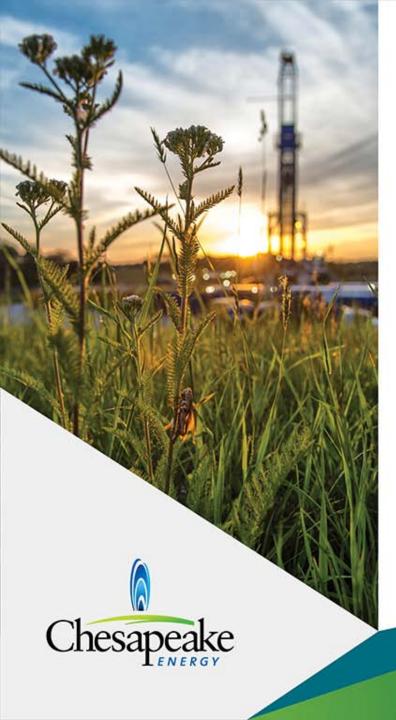
- > Economics
- > Power demand
- > Waste generation

ECONOMICS

POWER DEMAND

Photo copyright Forbes

- VD/MVR & ZLD plants typically need 6-8 kwh / bbl water processed
- 50,000 bpd plant would use 109.5-146.0 gwh/year
- Avg household consumption is 10,932 kwh/year¹
- Avg household in Oklahoma has 2.55 people²
- A single 50,000 bpd plant will have the energy demand of a city with a population of 25,000-34,000 people!



WASTE / PRODUCT GENERATION

1

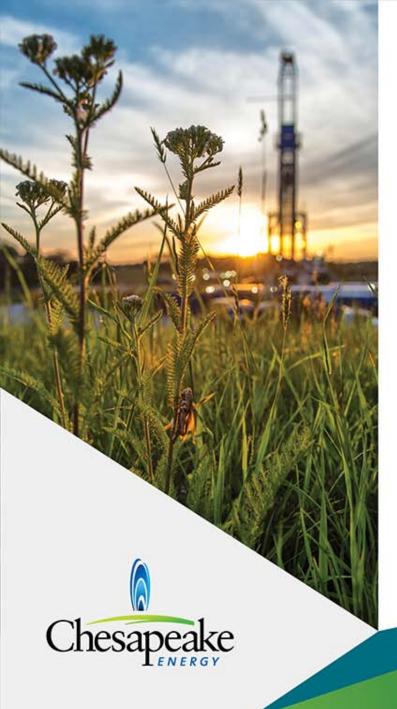
Capacity		Products and waste			
bbl/day	MGD	Filter Cake, (tons/day)	Distillate, (bbl/day)	Salt (tons/day)	CaCl ₂ Brine (bbl/day)
5,000	0.2	53	4,000	107	1,000
50,000	2.1	533	40,000	1,066	10,000
100,000	4.2	1,066	80,000	2,132	20,000
200,000	8.4	2,132	160,000	4,264	40,000
300,000	12.5	3,198	240,000	6,396	60,000

Numbers based off of typical composition of a produced water that is relatively high in salinity with a moderate level of hardness.

POTENTIAL TECHNOLOGIES

MEMBRANE DISTILLATION

MEMBRANE DISTILLATION


Pros

- > Membrane is resistant to fouling
 - only pretreatment is oil removal
 - Hardness and bacteria have not shown to be troublesome
- > Low energy demand
- > Can handle high TDS brines
- > Can utilize waste heat sources
- Potential to provide recovery of a distillation unit at the cost of an RO

Cons

- > Oil can foul membranes
- > While more economical than a VD/MVR process and much less energy intensive – still cannot compete with majority of Class II SWD options; however, waste heat can swing the pendulum
- > Not commercially available

HINDRANCES TO BENEFICIAL REUSE

- HOW WILL THE WATER BE USED?
- WHAT IS IN THE WATER?
- WHERE WILL IT BE USED?

PRODUCED WATER CHALLENGES IN A LIMITED REUSE, LIMITED DISPOSAL ENVIRONMENT RICK McCURDY

