Bob Long,
Director of Technology

SWD MANAGEMENT AND INJECTIVITY

Bob Long,
Director of Technology
Phase Change

- **Equilibrium**
- **Critical Point**
- **Triple Point**

Key Processes:
- Melting
- Freezing
- Condensation
- Sublimation
- Deposition

Axes:
- P (atm)
- T (°C)
Methods used to quantify Solids and phase change

- Oil Analysis for Paraffin and Asphaltene content
- Water Analysis for Total Dissolved Solids
- BS&W centrifuge for % Suspended Solids
- Millipore for low level Total Suspended Solids
- Deposition coupons for what isn’t suspended
- Corrosion for increased corrosion by products
- Extended Filter studies for Suspended Solids
Oilfield Solids

- Paraffin and Asphaltenes
- Mineral Scales such as Barite (BaSO$_4$) and Calcite (CaCO$_3$)
- Formation fines such as Sand and Silts
- Iron Scales such as:
 - Siderite (FeCO$_3$) commonly called Iron Carbonate
 - Ferrous Sulfide (FeS) or Iron Sulfide is Amorphous
 - Greigite (Fe$_3$S$_4$) is a crystalline Iron Sulfide Species
 - Magnetite (Fe$_3$O$_4$) or Iron Oxide
 - Pyrrhotite (Fe$_7$S$_8$) is another more stable crystal scale
 - Pyrite iron(II) disulfide, FeS$_2$ (cubic), the more stable endmember, known as fool's gold.
What Is it? Methods to ID

- Wet Bench or Solvent Soak Tests
- X-ray Diffraction Molecular ID for crystalline
- EDX / XRF for amorphous Solids
- SEM for visual ID
- Particle Size Analysis
EDX / SEM – Deposit Analysis

<table>
<thead>
<tr>
<th>Element Line</th>
<th>Element Wt.%</th>
<th>Wt.% Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>C K</td>
<td>8.21</td>
<td>+/-0.21</td>
</tr>
<tr>
<td>O K</td>
<td>15.97</td>
<td>+/-0.21</td>
</tr>
<tr>
<td>Na K</td>
<td>5.12</td>
<td>+/-0.13</td>
</tr>
<tr>
<td>Si K</td>
<td>4.8</td>
<td>+/-0.10</td>
</tr>
<tr>
<td>P K</td>
<td>0.7</td>
<td>+/-0.07</td>
</tr>
<tr>
<td>S K</td>
<td>27.31</td>
<td>+/-0.25</td>
</tr>
<tr>
<td>Cl K</td>
<td>2.06</td>
<td>+/-0.19</td>
</tr>
<tr>
<td>Fe L</td>
<td>35.84</td>
<td>+/-0.81</td>
</tr>
<tr>
<td>Total</td>
<td>100.01</td>
<td></td>
</tr>
</tbody>
</table>

Properly Identifying the debris and Quantity
Millipore and XRF

Pre Filter

- Iron (35%)
- Sulfur (29%)
- Silicon (14%)
- Chloride (9%)
- Zinc (6%)
- Phosphorous (2%)
- Calcium (5%)

<table>
<thead>
<tr>
<th>Element</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (Fe)</td>
<td>34%</td>
</tr>
<tr>
<td>Sulfur (S)</td>
<td>28%</td>
</tr>
<tr>
<td>Silicon (Si)</td>
<td>14%</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>5%</td>
</tr>
<tr>
<td>Phosphorous (P)</td>
<td>2%</td>
</tr>
<tr>
<td>Zinc (Zn)</td>
<td>6%</td>
</tr>
<tr>
<td>Chloride (Cl)</td>
<td>9%</td>
</tr>
</tbody>
</table>
X-Ray Diffraction
XRD – Deposit Analysis

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Bassanite 2CaSO4•(H2O)</th>
<th>Quartz SiO2</th>
<th>Sr-Barite Ba0.75Sr0.255SO4</th>
<th>Aragonite CaCO3</th>
<th>K-Feldspar KAISI3O8</th>
<th>Mg-Calcite (Ca,Mg)CO3</th>
<th>Siderite Fe++CO3</th>
<th>Anhydrite CaSO4</th>
<th>Gypsum CaSO4•2(H2O)</th>
<th>Celestine SrSO4</th>
<th>Total Clay</th>
</tr>
</thead>
<tbody>
<tr>
<td>17C</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>41C</td>
<td>0</td>
<td>0</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>64</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>137C</td>
<td>46</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>35D</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>71</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>156D</td>
<td>9</td>
<td>24</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>54</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>167D</td>
<td>0</td>
<td>55</td>
<td>0</td>
<td>35</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
DETERMINING THE ROOT CAUSE
AND MORE EFFECTIVE SOLUTIONS
TO PREVENT SOLIDS.
Root Cause Solutions

1. Map the Process Flow with T & P
2. Develop a monitoring and system survey plan
3. Walk the pipe & process flow with Operations
4. Compile all historical data and failure info
5. Methodically collect a baseline of statistically valid data.
6. Develop a root cause solution with operations
7. Implement a trial of one solution at a time
8. Minimizes other system changes while collecting comparative data
Investigative Tests

• CO$_2$ and H$_2$S Levels
• Water Analysis
• Millipore TSS
• BS / BS&W %
• Deposit ID
• Bacteria Survey
• Scale Deposition Rate
• Pitting Corrosion Rate
• General Corrosion Rate
• Dissolved Oxygen
• Chemical Residuals
• Oil Content in water
• Soluble oil & Grease
• Interfacial vessel pads
Finger Printing Sources

<table>
<thead>
<tr>
<th>Well</th>
<th>Active Well</th>
<th>TotFld (BBLs)</th>
<th>BaSO4 Scale Index</th>
<th>CaCO3 Scale Index</th>
<th>TSS lbs/D</th>
<th>Paraffin lbs/D</th>
<th>Scale lbs/D</th>
<th>Sand lbs/D</th>
<th>Fe lbs/D</th>
<th>Emulsion</th>
<th>Highest Gas Vel</th>
<th>H2S</th>
</tr>
</thead>
<tbody>
<tr>
<td>A002</td>
<td>No</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A003</td>
<td>Yes</td>
<td>36</td>
<td>3.33</td>
<td>2.66</td>
<td>0.67</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A004</td>
<td>Yes</td>
<td>455</td>
<td>0.00</td>
<td>0.00</td>
<td>2.10</td>
<td>0.88</td>
<td>0.93</td>
<td>0.29</td>
<td>2.71</td>
<td>0</td>
<td>83</td>
<td>4</td>
</tr>
<tr>
<td>A007</td>
<td>Yes</td>
<td>4472</td>
<td>0.46</td>
<td>-0.52</td>
<td>0.25</td>
<td>0.25</td>
<td>0.00</td>
<td>0.25</td>
<td>16.75</td>
<td>10</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>A008</td>
<td>Yes</td>
<td>1052</td>
<td>-0.062</td>
<td>-1.93</td>
<td>2.92</td>
<td>0.00</td>
<td>2.92</td>
<td>0.00</td>
<td>6.19</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>A010</td>
<td>Yes</td>
<td>29</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>84</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A011</td>
<td>Yes</td>
<td>67</td>
<td>-0.02</td>
<td>-0.13</td>
<td>0.53</td>
<td>0.45</td>
<td>0.08</td>
<td>0.45</td>
<td>0</td>
<td>0</td>
<td>77</td>
<td>0</td>
</tr>
<tr>
<td>A012</td>
<td>Yes</td>
<td>433</td>
<td>0.9</td>
<td>0.46</td>
<td>2.56</td>
<td>2.16</td>
<td>0.40</td>
<td>2.16</td>
<td>0.00</td>
<td>20</td>
<td>112</td>
<td>0</td>
</tr>
<tr>
<td>A013</td>
<td>Yes</td>
<td>91</td>
<td>0.19</td>
<td>-2.19</td>
<td>1.01</td>
<td>0.50</td>
<td>0.45</td>
<td>0.56</td>
<td>0.59</td>
<td>0</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>A016</td>
<td>Yes</td>
<td>176</td>
<td>0.59</td>
<td>-1.63</td>
<td>19.58</td>
<td>19.42</td>
<td>0.12</td>
<td>19.46</td>
<td>0.00</td>
<td>50</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>A018</td>
<td>Yes</td>
<td>216</td>
<td>0.02</td>
<td>-2.39</td>
<td>8.91</td>
<td>8.53</td>
<td>0.38</td>
<td>8.53</td>
<td>0.00</td>
<td>0</td>
<td>86</td>
<td>1</td>
</tr>
<tr>
<td>A020</td>
<td>Yes</td>
<td>349</td>
<td>4.61</td>
<td>4.26</td>
<td>0.35</td>
<td>4.26</td>
<td>2.21</td>
<td>0</td>
<td>103</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A021</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>A024</td>
<td>Yes</td>
<td>2664</td>
<td>-0.06</td>
<td>-2.31</td>
<td>0.06</td>
<td>0.00</td>
<td>0.06</td>
<td>0.00</td>
<td>5.87</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>A027</td>
<td>Yes</td>
<td>26</td>
<td>-0.11</td>
<td>-1.62</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
<td>0.02</td>
<td>0.19</td>
<td>0</td>
<td>57</td>
<td>0</td>
</tr>
<tr>
<td>A034</td>
<td>Yes</td>
<td>110</td>
<td>0.54</td>
<td>0.51</td>
<td>0.03</td>
<td>0.51</td>
<td>0.59</td>
<td>0</td>
<td>23</td>
<td>0</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>A036</td>
<td>Yes</td>
<td>5</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A037</td>
<td>Yes</td>
<td>0</td>
<td>0.98</td>
<td>-1.65</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>99</td>
<td>0</td>
</tr>
<tr>
<td>A039</td>
<td>Yes</td>
<td>0</td>
<td>0.08</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>0</td>
<td>47</td>
<td>0</td>
</tr>
<tr>
<td>A048</td>
<td>Yes</td>
<td>228</td>
<td>-0.06</td>
<td>-2.31</td>
<td>48.43</td>
<td>26.32</td>
<td>7.41</td>
<td>41.02</td>
<td>2.18</td>
<td>0</td>
<td>76</td>
<td>0</td>
</tr>
<tr>
<td>A052</td>
<td>Yes</td>
<td>2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0</td>
<td>60</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A054</td>
<td>Yes</td>
<td>240</td>
<td>0.34</td>
<td>18.48</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.17</td>
<td>0</td>
<td>45</td>
<td>6</td>
</tr>
</tbody>
</table>
Programs to Prevent Solids

- Iron Inhibitors to keep in solution
- Corrosion Inhibitors
- Scale Inhibitors
- Scavengers to prevent Sulfides and Oxides
- Salt Inhibitors and Fresh Water Wash
- Complete Kill Biocide programs
- Wax Inhibitors
EXAMPLE CASE STUDIES

AND

RETURN ON INVESTMENT
ROI Benefits for Programs

- Reduced costs of solids waste handling
- Eliminating or reducing Acids, EBs and Clarifiers
- Preventing the need for Capital Expenses
- Prevention of decreased production / down time
- Reduced Operating costs like:
 - Energy Savings
 - Heating Emulsions
 - Pump maintenance.
 - Acid or Coil Tubing jobs
“Offshore– Case Study”

Operators Issues:

- Over Pressured Salt Water Disposal (SWD) wells
- Coil tubing remediation clean outs
- Loss of revenue, with high Oil PPM being disposed of
- Solids disposal and clean out of separators and Skimmer
- Increased water pump failures due to erosion
- Continued loss of well Injectivity after clean outs
- Field became production limited, with water disposal limitations
Offshore – Case Study

Survey result summaries:

- Separators & vessels not functioning due to scale buildup
- Water was corrosive, adding Iron to the system
- Dissolved Oxygen intrusion was further precipitating Iron
- Ineffective biocide program applied downstream of contaminated vessels and equipment.
- Paraffin program was downstream of problem
- Scale Inhibitor, was applied after precipitation
- No effective KPIs to manage chemical programs
Solutions:

- Combination Iron, Corrosion and Scale Inhibitor was applied upstream of separators
- SWD surfactant program was discontinued
- Emulsion Breaker was discontinued in summer months and not needed on most separators during winter
- Separators and water skimmer were cleaned up
- Extensive monitoring was done with KPIs added
- Operator adding chemical captain to own programs
Return on Investment

<table>
<thead>
<tr>
<th></th>
<th>$ Prior</th>
<th>$ After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manpower</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reparing SWD pumps</td>
<td>$40,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>SWD Coil Tubing Job</td>
<td>$120,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>Gains</td>
<td>$0</td>
<td>$60,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maintenance</th>
<th>$ Prior</th>
<th>$ After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue Increase</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remove 400 ppm oil</td>
<td>$0</td>
<td>$233,600</td>
</tr>
<tr>
<td>Gains</td>
<td></td>
<td>$233,600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
<th>$ Prior</th>
<th>$ After</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>$ Prior</td>
<td>$ After</td>
</tr>
<tr>
<td>Chemical Savings</td>
<td>$250,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>Gains</td>
<td>$0</td>
<td>$100,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Investment</th>
<th>$ Prior</th>
<th>$ After</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 pumps</td>
<td>$0</td>
<td>$7,000</td>
</tr>
<tr>
<td>Valves and gauges</td>
<td>$0</td>
<td>$3,000</td>
</tr>
<tr>
<td>Chemical Program</td>
<td></td>
<td>$150,000</td>
</tr>
<tr>
<td>New Investment</td>
<td>$160,000</td>
<td></td>
</tr>
</tbody>
</table>

Net Gain $233,600

ROI = 146 Percent with a 0.41 Year Payback

\[
\text{ROI} = \frac{\text{Gains ($160,000)} + \text{Revenue ($233,600)} - \text{Investment ($160,000)}}{\text{Investment($160,000)}} = 146\% \\
\text{Payback Period} = \frac{\text{Investment ($160,000)}}{\left[\text{Gains ($160,000)} + \text{Revenue ($233,600)} \right]} = 0.41 \text{ Years}
\]

Comments:
- Chemical Savings in 2014 over X-chem 2013 and 2012 usage
- Projected Annual Usage Cost = $150000
- SWD Remediation clean out job with Coil Tubing job
- SWD Pump repair estimate, need to decrease

Note: All dollar values must be annualized.

20,000 BWPD x 400 ppm x 365 x $80 barrel = $233,600

Revision: 2.1
Operators Issues:

- Plugging up Water Flood and SWD wells
- Oil wet Solids
- Solids causing high filter costs
- Coil tubing interventions at $5,000,000 / year
- Excessive filter costs
- lost revenue from Water Flood
Filter Study

<table>
<thead>
<tr>
<th>Plant rate of 55,000 BBLS/Day</th>
<th>Pre Weight</th>
<th>Post Weight</th>
<th>Delta</th>
<th>Volume (Liters)</th>
<th>TSS (mg/L)</th>
<th>TOTAL SOLIDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plains Pre Filter 0.45 Train II</td>
<td>0.0808</td>
<td>0.1336</td>
<td>0.0528</td>
<td>1</td>
<td>52.8</td>
<td>31,163 lbs/yr</td>
</tr>
<tr>
<td>Plains Post Filter 0.45 Train II</td>
<td>0.0796</td>
<td>0.1440</td>
<td>0.0644</td>
<td>1</td>
<td>64.4</td>
<td>38,009 lbs/yr</td>
</tr>
<tr>
<td>Plains Post Filter 1.2 filter Train II</td>
<td>0.0709</td>
<td>0.1076</td>
<td>0.0367</td>
<td>1</td>
<td>36.7</td>
<td>21,660 lbs/yr</td>
</tr>
<tr>
<td>Plains Pre Filter 1.2 filter</td>
<td>0.0700</td>
<td>0.1148</td>
<td>0.0448</td>
<td>1</td>
<td>44.8</td>
<td>26,441 lbs/yr</td>
</tr>
<tr>
<td>Plains Pre Filter 3.0 Filter</td>
<td>0.0625</td>
<td>0.1072</td>
<td>0.0447</td>
<td>1</td>
<td>44.7</td>
<td>26,382 lbs/yr</td>
</tr>
<tr>
<td>Plains Train II Post Filter 3.0 Filter</td>
<td>0.0634</td>
<td>0.0931</td>
<td>0.0297</td>
<td>1</td>
<td>29.7</td>
<td>17,529 lbs/yr</td>
</tr>
<tr>
<td>Plains Pre Filter 8.0 Filter</td>
<td>0.1313</td>
<td>0.1566</td>
<td>0.0253</td>
<td>1</td>
<td>25.3</td>
<td>14,932 lbs/yr</td>
</tr>
<tr>
<td>Plains Train II Post Filter 8.0 Filter</td>
<td>0.1315</td>
<td>0.1493</td>
<td>0.0178</td>
<td>1</td>
<td>17.8</td>
<td>10,505 lbs/yr</td>
</tr>
<tr>
<td>Plains Pre Filter 8.0 Filter</td>
<td>0.0596</td>
<td>0.1304</td>
<td>0.0708</td>
<td>1</td>
<td>70.8</td>
<td>41,904 lbs/yr</td>
</tr>
<tr>
<td>Plains Train II Post Filter 8.0 Filter</td>
<td>0.0600</td>
<td>0.0940</td>
<td>0.0340</td>
<td>1</td>
<td>34</td>
<td>20,066 lbs/yr</td>
</tr>
</tbody>
</table>
Identifying the filtered solids

<table>
<thead>
<tr>
<th>Results*</th>
<th>K-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron (% as Fe)</td>
<td>67</td>
</tr>
<tr>
<td>Chloride (% as Cl)</td>
<td>9</td>
</tr>
<tr>
<td>Sodium (% as Na)</td>
<td>3</td>
</tr>
<tr>
<td>Calcium (% as Ca)</td>
<td>5</td>
</tr>
<tr>
<td>Sulfur (% as S)</td>
<td>9</td>
</tr>
<tr>
<td>Silicon (% as Si)</td>
<td>4</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Beginning (weight in g)</td>
<td>N/A</td>
</tr>
<tr>
<td>Ending (weight in g)</td>
<td>N/A</td>
</tr>
<tr>
<td>Deposit (weight in g)</td>
<td>N/A</td>
</tr>
<tr>
<td>Volume (in mL)</td>
<td>N/A</td>
</tr>
<tr>
<td>TSS (mg/L)</td>
<td>N/A</td>
</tr>
</tbody>
</table>

K-4 Pie Chart
- Iron (% as Fe): 67%
- Chloride (% as Cl): 9%
- Sodium (% as Na): 3%
- Calcium (% as Ca): 5%
- Sulfur (% as S): 9%
- Silicon (% as Si): 4%
Calculating the Injectivity index (II) is the most common way of analysing performance of injection wells. The calculation can be made from only the most basic data: injection rate (Q), injection pressure P_{wf} (corrected for bottom hole flowing conditions), and far-field reservoir pressure P_e. In oilfield units, the Injectivity index is commonly calculated as:

$$II = \frac{Q}{P_{bhi} - P_e} = \frac{k_w \cdot h_i}{141.2 \cdot \mu_w \cdot B_w \cdot \left(\ln \frac{r_e}{r_w} + S \right)}$$

where Q is in STB/d and P in psia. Additional data required includes permeability k_w in md, water viscosity μ_w in cp, water FVF B_w (res vol/STC vol), wellbore and drainage radii r_w and r_e in ft, and injection height h_i in ft. The term S denotes the total near-wellbore skin which may be composed of mechanical (completion) skin, plugging, fracturing, and flow related skin (turbulence).
Injectivity Losses

Injectivity = \frac{BWPD}{P}
Injectivity Repair

Treated with 50 Gals E-2410
Injectivity Repair

Treated with 50 Gals E-2410
Any questions?

Contact:
Bob Long – Director of Technology
Bob.long@uswaterservices.com
713-201-5519