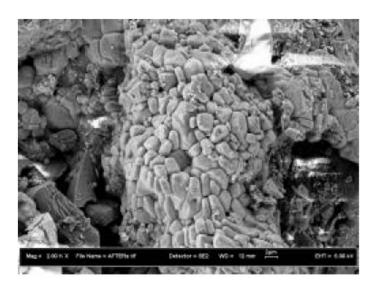

The Chemistry of Produced Water

Adam Garland Chief Science Officer, Water Lens LLC September 21, 2017

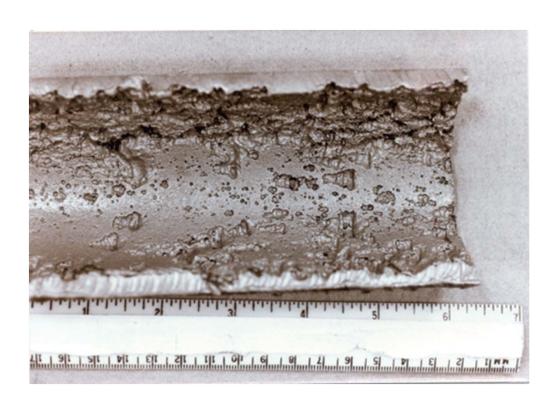
Produced Water Chemistry is Important


- Saltwater disposal
- Increasing use of produced water in fracturing
- What is causing the problem?
 - Pressure spikes
 - Rock won't fracture
 - Whose fault is it?
 - Why did this happen?

Scale

- Scaling indexes
 - Based on inorganic ion incompatibility
 - Must know both the pumping water chemistry and the formation water chemistry
 - Using seawater to pump
 - Scaling in the formation can cause permanent damage

producedwaterevents.com

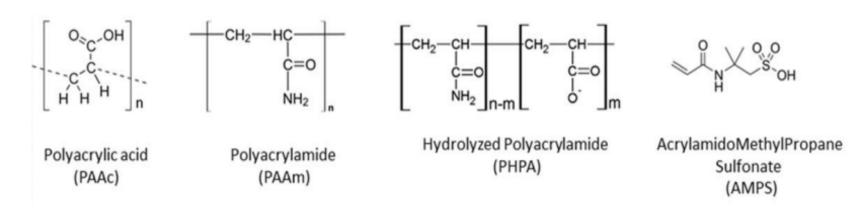

Two types of scaling

- Mixing of incompatible waters
 - Injection of brines incompatible with formation water
 - Damages to the formation
- Self scaling
 - Scale deposits form as formation water is brought to the surface
 - Changes in temperature and pH
 - Little effect on formation

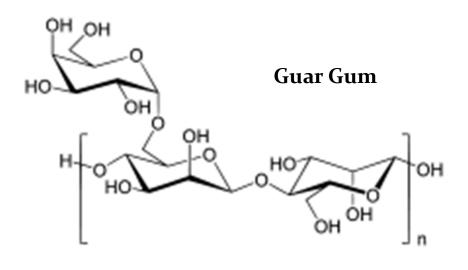
Corrosion

- "Aggressive" water composition
 - Protective scale erosion
 - Acidic conditions
 - Corrected by corrosion inhibitors

Membrane Fouling


- Membranes for produced water treatment
 - RO
 - Particulate
 - Highest concentrations at membrane surface
- Deposition on the surface of the membrane
 - Suspended solids
 - Microorganisms
 - Mineral scale

Friction Reducers


- Required to make "slickwater" for fracs
- Cationic and anionic
 - Cation/anion levels affect performance, cause precipitation
 - Harder anions/cations affect more

Gelling Agents

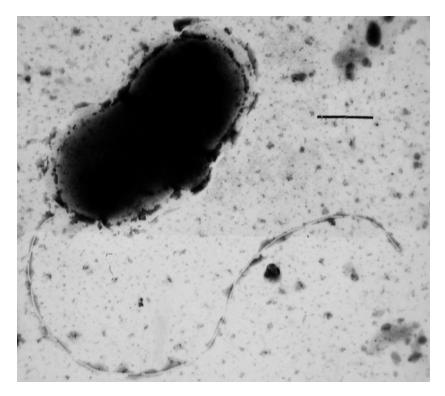

- Used in gel fracs
- Must be broken down for cleanup
- Guar gum, derivatives (crosslinked)
 - Temperature, pH, crosslinkers
 - Hardness (Ba²⁺, Sr²⁺, Ca²⁺, Mg²⁺)

Current Laboratory Tests

- AA & ICP-MS/OES
 - Measures each ion's absorbance, emission, and/or mass
 - Low LOD
 - Susceptible to high TDS, interferences
 - Often limited to cations
 - Difficult to deploy in the field
- Ion Chromatography (IC)
 - Measures ion's elution times out of a selective column
 - Tests anions and cations and polyatomic anions
 - Higher LOD, smaller scope than ICP
 - Susceptible to interferences from coeluting ions

Conductivity and TDS

- Assumes NaCl solution
 - Tends to overshoot
- Equation breaks down over ~100,000 TDS
 - Overshoots very strongly
- Results may correlate well by chance alone
 - Presence of polymer (FR, gel, etc) will justify the overshoot
 - Purely by luck
 - Always overshoots when polymer is absent



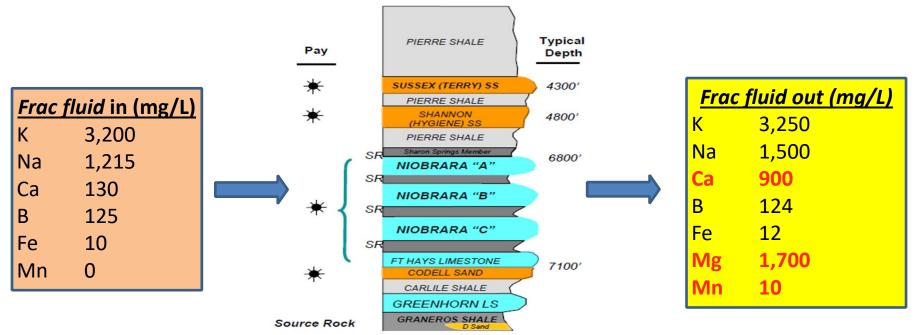
To Acidize or Not To Acidize?

- Acid "Preservation" (Filter, then acidify)
 - Keeps things in solution at their original concentration
 - Fights action of carbonate precipitation
 - Mg, Ca, Sr, Ba, Fe, etc.
- Acid "Digestion" (Acidify, then filter)
 - Yields total mineral content
 - Changes many insoluble species into soluble species
- BOTH will give complete picture, but also change key parameters

Biological Agents

Desulfovibrio vulgaris

- Acid producing bacteria (APB)
 - Corrosive to pipes and equipment
- Sulfate reducing bacteria (SRB)
 - Hydrogen Sulfide



Current Bacteria Tests

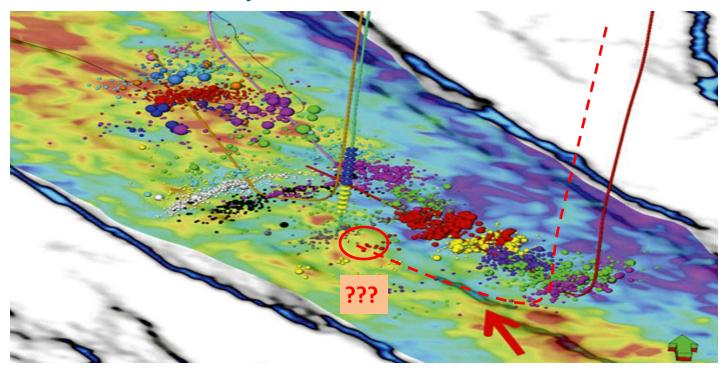
- Classification and Quantification
- ATP Tests ("Bug Bottles")
- DNA Tests (PCR)
- Chemical Tagging
- Live vs. Dead Bacteria
 - Sample Location
 - ATP/DNA concentration changes from point of treatment and with time
 - Determine biocide effectiveness

Changing Water Chemistry

- Used for predictive measures
 - Ca increase may mean corrosion inhibitors are ineffective
 - Mg increase may mean frac job tagged dolomite interval
 - Mn increase indicates corrosion in pipes

Switching from Flowback to Production

- When is the water coming back to the surface ready for production?
 - Free from fracturing additives
 - High dispersed oil content
 - Most common to flow back "X" number of barrels
- Use water chemistry data to determine switching point
 - Monitor flowback for changes in water chemistry
 - Plot trends to determine when to switch
 - Save on crew time



Conclusion

- Water chemistry must be consistently monitored
 - Preventative measures
 - Predictive measures

Predictive Accuracy in Future Frac Fluid Make-Up

- Tie flowback water chemistry to 3D seismic
- Use correlations to predict geology

Proppants

- Deposition of "filter cake" in gel fracs
- Coated proppants have chemical requirements
 - Decreased rate of formation scaling
 - Timed release of scale inhibitors
 - Sensitive to hard cations

Produced Water

- Natural water released from the formation
- Flowback vs Produced Water
 - When to switch?
- Dispose or Recycle
 - Land based operations
 - Offshore

Recycling of flowback and produced water

- Save money
- Prevent environmental concerns
- Monitor microbial contamination
- Requires chemical additives for compatibility

Events and Trends

- Changing water chemistry
- Steady or sudden
- Monitor drilling fluid for feedback