

Enhanced Removal of Suspended Solids and Residual Oil in Produced Water by Chlorine Dioxide

Greg Simpson, PhD & Zhengkai (Zack) Li, PhD PE

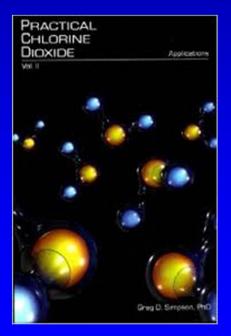
PureLine Treatment Systems Bensenville, IL, U.S.A.

Produced Water Society Permian Basin Workshop Midland, Texas, U.S.A. September 20-21, 2017

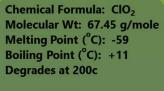
Outline

Part I. Background of CIO₂

- What is ClO₂?
- Where is CIO₂ Used?
- What are the mechanisms of CIO₂?
- Part II. CIO₂ Treatment of Produced Water
 - Use of CIO₂ as Potent Biocide
 - Use of ClO₂ as Robust Oxidant
 - Role in Removal of SS and Residual Oil



Introduction of CIO₂

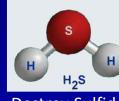

A	
	-

- A stable free radical present as gas at ambient temperature
- A true dissolved gas in solution, but not react with water
- 2.5 times the oxidizing capacity of Chlorine

 \bullet

- A strong oxidizer with a very selective reaction chemistry
- A potent disinfectant, sterilant and biocide
- Must be generated at point of use
 - Oxidation of Chlorite (ClO_2)
 - Reduction of Chlorate (CIO_3^{-})
- Effective at a broad range of pH
- Approved by EPA, FDA, and WHO

Applications of CIO₂

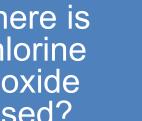

Legionella Control

Odor Control

Potable Water

Destroy Sulfides

Beverage Industry



Oil & Gas

Ballast Water

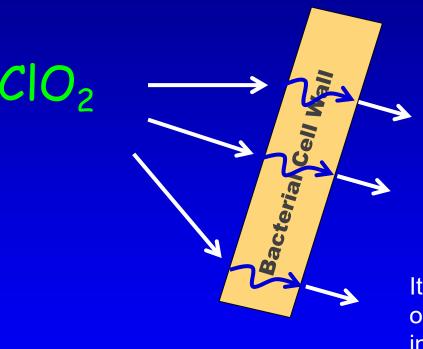
Where is Chlorine Dioxide Used?

Food Processing

Chill Loops and **Cooling Towers**

Fruit and Vegetable Wash producedwaterevents.com

Species	Problems	CIO ₂ Effectiveness
Bacteria	Corrosion, Clogging, Production of H ₂ S	Very Effective
Biofilm	Corrosion, Clogging	Very Effective
H ₂ S	Corrosion, Souring of Reservoir	Very Effective
FeS	Corrosion, Clogging	Very Effective
Hardness Salts	Deposit/Scale, Clogging	No Direct Effect
Barium Salts	Deposit Formation, Clogging	No Direct Effect
NORM	Environmental	Effective *


* Mason, J., Block, R. and Knippers, M., "Reduction of Naturally Occurring Radioactive Material Disposal Volume by Chemical and Physical Treatment," SPE 24563, 67th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Washington, DC, October 4-7, 1992

CIO₂ & Bacteria

1. Penetration

Penetration of the cell wall – Rate limiting step

The bacterial cell wall thickness varies. Spores are much more resistant to disinfection than bacteria

CIO₂ was chosen to inactivate anthrax spores in DC

It is the penetration factor that makes one bacterium more or less resistant to inactivation.^{1,2}


- 1. McDonnell, G. and Russell, A., "Antiseptics and Disinfectants: Activity, Action, and Resistance," *Clinical Microbiology Reviews*, 12(1), 147(1999).
- 2. Ingols, R. and Ridenour, G., "Chemical Properties of Chlorine Dioxide," *Journal of the American Water Works Association*, 40, 1207(1948).

CIO₂ & Bacteria

2. Oxidation of Vital Cell Components

(Reduced Sulfides)

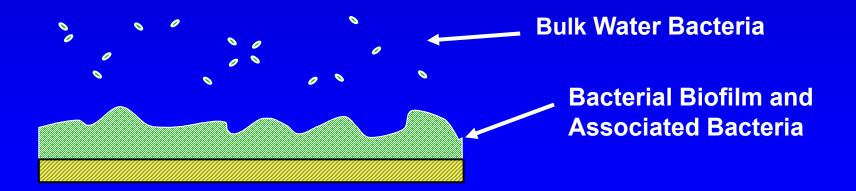
(Oxidized Sulfones)

 The affinity of CIO₂ for reduced sulfur compounds, specifically the thiol group (-SH), could be an important mode of bacterial disinfection ^[1,2,3]

[1] Green, D. and Stumpf, P., "The Mode of Action of Chlorine," *Journal of the American Water Works Association*, 38, 1301(November, 1946).

[2] Knox W., Stumpf, P., Green, D., and Auerbach, V., "The Inhibition of Sulfhydryl Enzymes as the Basis of the Bacterial Action of Chlorine," *Journal of Bacteriology*, 55,451 (1948).

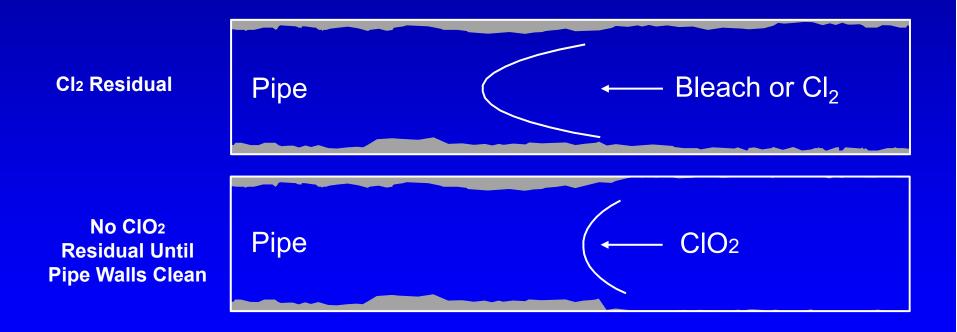
[3] Ison, A., Odeh, I. N., & Margerum, D. W. (2006). Kinetics and mechanisms of chlorine dioxide and chlorite oxidations of cysteine and glutathione. *Inorganic chemistry*, 45(21), 8768-8775. producedwaterevents.com

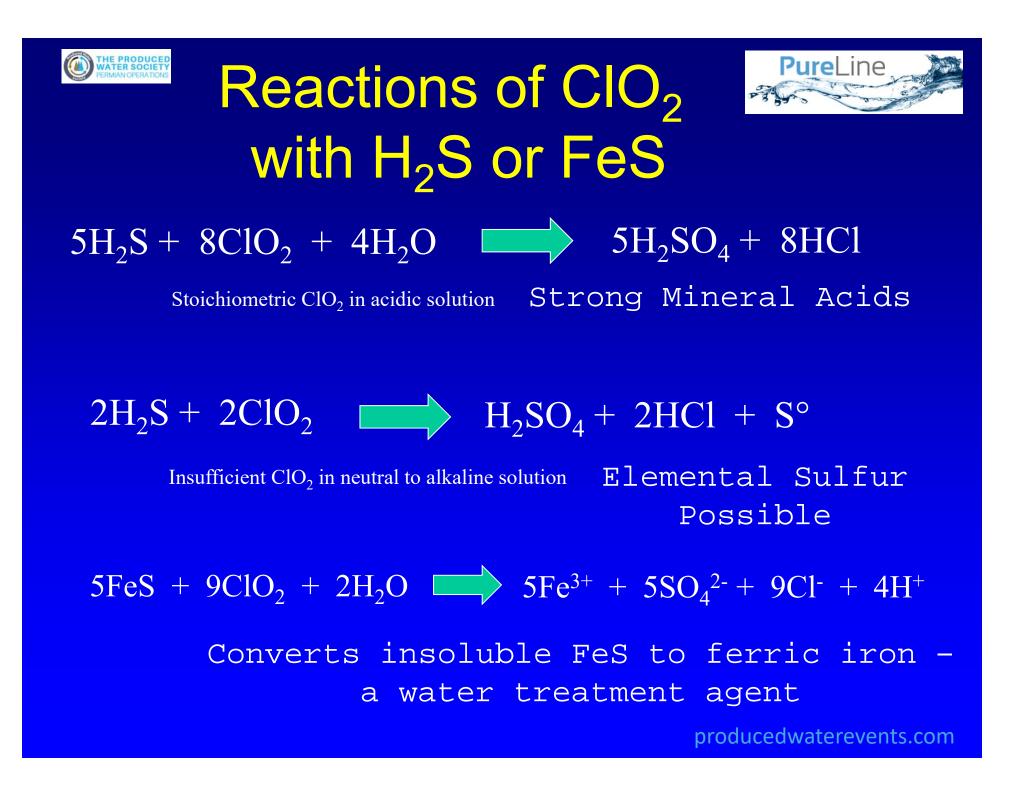


CIO₂ & Biofilm

ClO₂ reacts with...

- 1. Planktonic bacteria in the bulk water
- Biofilm and Sessile Bacteria on system surfaces. For ClO₂, one <u>must</u> account for surface demand.

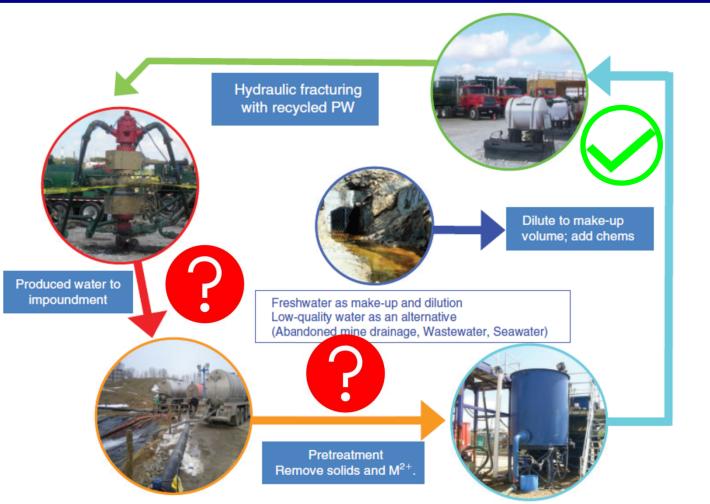




ClO₂ & Biofilm

- 1. Proves much more effective in biofilm disinfection than Cl_2 .
- 2. Exhibits very low effective C*T- values compared to Cl_2 .

Hosni, A.A., Shane, W.T., Szabo, J.G. and Bishop, P.L., "The disinfection efficacy of chlorine and chlorine dioxide as disinfectants of B. globigii, a surrogate for B. anthracis, in water networks: a comparative study," *Canadian Journal of Civil Engineering*, 36: 732-737, 2009.



Outline

✤ Part I. Background of CIO₂

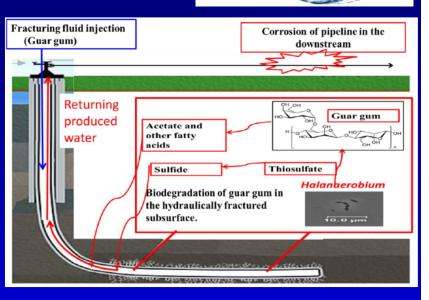
- What is ClO₂?
- Where is CIO₂ Used?
- What are the mechanisms of CIO₂?
- Part II. CIO₂ Treatment of Produced Water
 - Use of CIO₂ as Potent Biocide
 - Use of CIO₂ as Robust Oxidant
 - Role in Removal of SS and Residual Oil

Purel ine

* Gregory, K. and Mohan, A.M. 2015. Current perspective on produced water management challenges during hydraulic fracturing for oil and gas recovery. *Environ. Chem.*, 12, 261–266 producedwaterevents.com

Common Contaminants

Microorganisms


- Degrade the quality of oil and gas
- Microbiologically Influenced Corrosion
- Plug formation with biofilms

Suspended Solid, Residual Oil

- Foul water treatment systems
- Cause expensive maintenance operations for injection wells

Iron Sulfide

- Decrease production rates by plugging the formations, and corrosion of well casing and tubing
- Stabilize emulsions at oil/water interface, and make it very difficult process to separate oil/water/solids

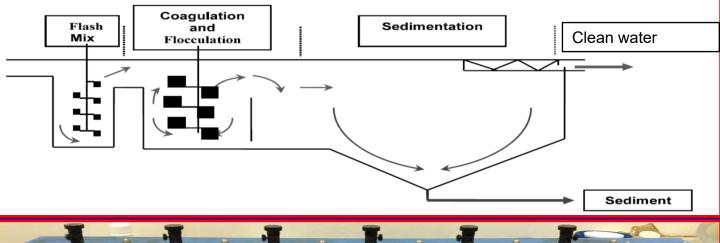
Purel ine

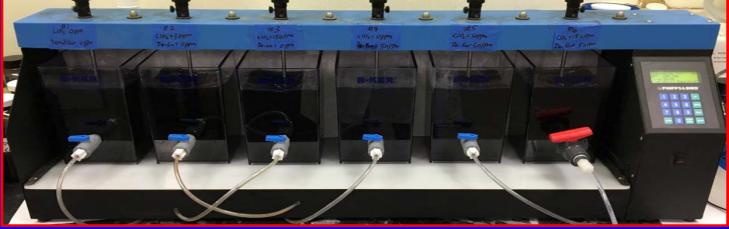
Liang et al., 2016. Frontiers in Microbiology

Roles of Chlorine Dioxide in Produced Water Treatment #1. Biocide

- Drastic distinction of microbial communities in produced waters and other source waters must be considered for disinfection
- Halo- and thermophilic Anaerobes predominant in produced water Tolerant to non-oxidizing biocide but susceptible to oxidizing biocide

#2. Oxidant


- Oxidize FeS to break up the oil-in-water emulsions; oxidized $Fe(OH)_3$ serve as coagulant to enhance flocculation and sedimentation
- Oxidation of organic compounds (e.g. aromatic amines, phenols, and polyacrylamide breakdown products) to reduce FOG in water


To investigate the impact of chlorine dioxide on enhanced removal of residual oil and SS from produced waters

Testing Apparatus

- Mixing conditions: 250 rpm for 30 min to disperse oil; 150 rpm for 5 min, 20 rpm for 20 min, and 0 rpm for 30 min
- Measured Parameters: pH, ORP, Temperature, density, ClO₂ residual, total sulfides, ferrous iron, total iron, TSS, and residual oil

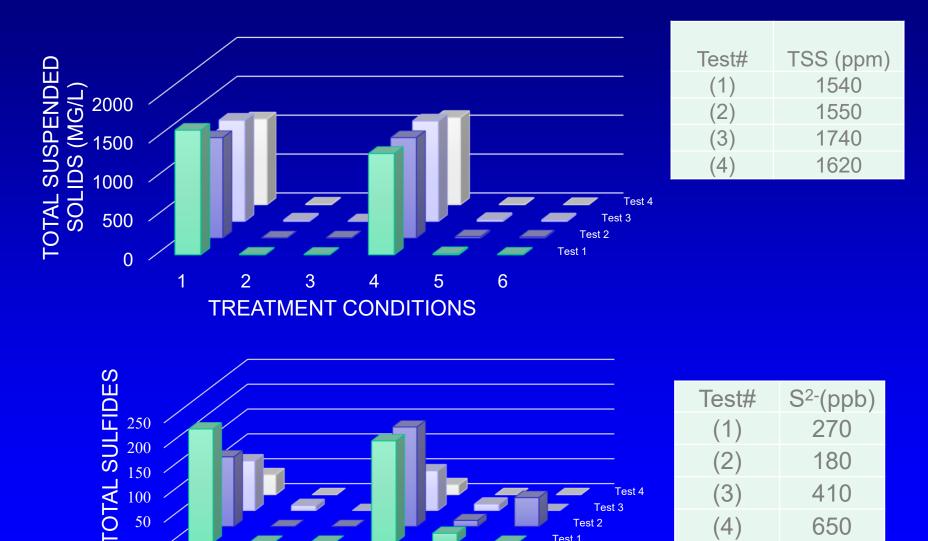
Testing Procedure

Test conditions					
Test No	Produced Water				
Test (1)	Raw produced water (RPW)				
Test (2)	PW Amended with Gasoline				
Test (3)	PW Amended with Diesel				
Test (4)	PW Amended with Motor Oil				

Treatment conditions

Jar No	CIO ₂ (ppm)	De-Emulsifier (ppm)
(1)	0	0
(2)	50	0
(3)	150	0
(4)	0	50
(5)	50	50
(6)	150	50

Reaction and Flocculation PureLine


100

50

0

TSS & Total Sulfides

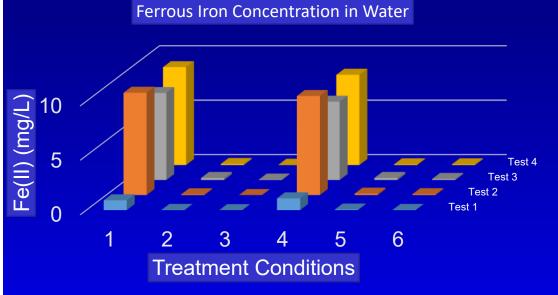
410

650

(3)

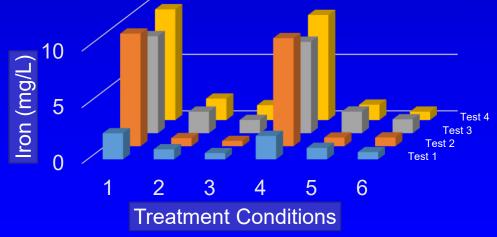
(4)

Test 4


Test 3

Test 2 Test 1

Iron Removal

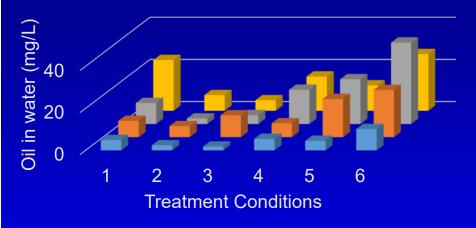


Test	ICP-AES
(1)	13.8 mg/L
(2)	14.7 mg/L
(3)	14.1 mg/L
(4)	13.7 mg/L

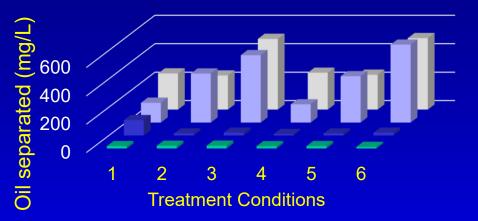
Total Iron Concentration in Water

For three oil-amended tests:

- w/o ClO₂: η (Fe) ≤ 43%
- with ClO₂ : η (Fe) ≥ 86 %



Oil – Water Separation



Oil in Water Concentration

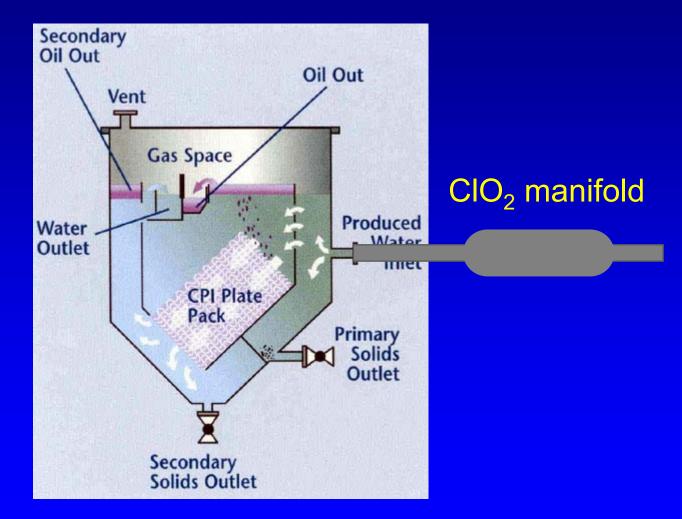
■ Test 1 ■ Test 2 ■ Test 3 ■ Test 4

Oil Separated from Water

■ Test 1 ■ Test 2 ■ Test 3 ■ Test 4

Treatment conditions	CIO2	Demulsifier	Diesel Oil		Motor Oil		
Jar#	(ppm)	(ppm)	W (%) S (%)		W (%)	S (%)	
1	0	0	0%	0% 0%		0%	
2	50	0	-74%	147% ↑	-69% -5%		
3	150	0	-58%	-58% 239% ↑↑		-79% 95% ↑	
4	0	50	63%	-8%	-32%	2%	
5	50	50	113%	134% ↑	-50%	-4%	
6	150	50	287%	292% ↑↑	12%	97% ↑	
				produ	cedwaterev	ents.com	

Summary of Results



- CIO₂ treatment removed TSS by > 99 %;
- CIO₂ treatment removed iron by > 86%;
- CIO_2 treatment removed sulfides by > 90%.
- CIO₂ treatment at both 50 ppm and 150 ppm levels enhanced oil-water separation for the tested diesel oil
- CIO₂ treatment at 150 ppm level also enhanced oil-water separation efficiency for the tested motor oil
- Commercial de-emulsifier at 50 ppm level has no significant effect in oil-water separation efficiency
- Tests with other sources of produced water confirmed positive correlation of CIO₂ dosage and total FOG reduction from water

Integration of CIO₂ Treatment into Existing Units*

* Source: https://www.netl.doe.gov/research/coal/crosscutting/pwmis/tech-desc/physep

Conclusions

- Produced waters are contaminated with bacteria and biofilm, hydrogen sulfides and iron sulfides, residual emulsions, etc.
 - These cause operational challenges such as clogging and corrosion, wear of facilities, and environmental compliance issues
- Chlorine dioxide can provide effective treatment, both as a potent biocide and as an oxidant
 - CIO₂ treatment very effectively removes iron and sulfides, controls TSS and residual oil, and improves the overall water quality of the produced water for reuse and recycle
- Best management practice may integrate chlorine dioxide into an existing or a new treatment system
 - Benefits include clean water, reduced footprint, savings on operational and capital costs, elimination of hydrogen sulfides, mitigation of corrosion, and good for the environment <u>producedwaterevents.com</u>

Thank you!

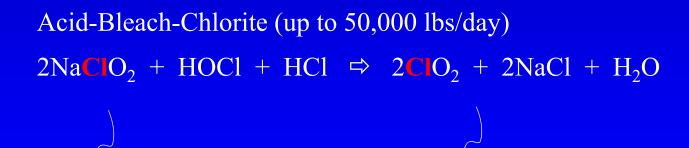
Supplementary Slides

How is CIO₂ Made?

- CIO2 is produced in two ways
 - 1. Reduction of chlorate ion (CIO₃-)

Chlorate/Peroxide + Sulfuric Acid

NaClO₃ + $\frac{1}{2}$ H₂O₂ + $\frac{1}{2}$ H₂SO₄ \Rightarrow ClO₂ + $\frac{1}{2}$ O₂ + $\frac{1}{2}$ Na₂SO₄ + H₂O Cl (+5) Cl (+4)

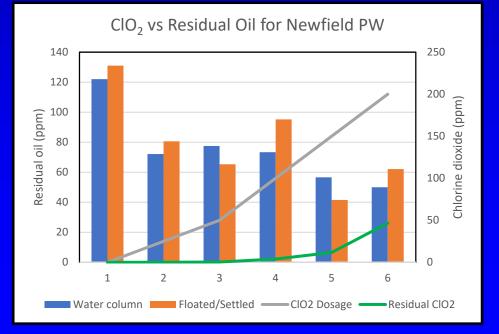


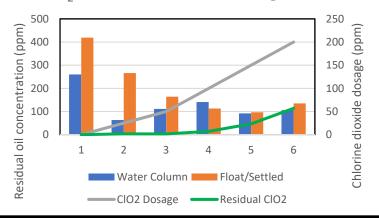
How is CIO₂ Made?

- CIO2 is produced in two ways
 - 2. Oxidation of chlorite ion (ClO_2^{-})

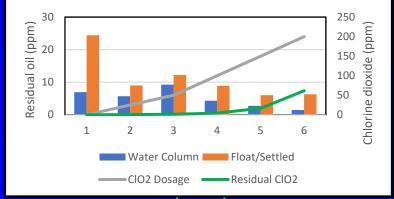
Acid-Chlorite (1000 lbs/day max) $5NaClO_2 + 4HCl \Rightarrow 4ClO_2 + 5NaCl + 2H_2O$

Cl (+4)





RPW	Hardness	Na	К	Mg	Са	Sr	Ba	Iron	Mn	В	Р
Test#	(As CaCO3 mg/L)	(mg/L)									
5 (N2)	68	2,010	42.8	3.55	21	4	0.903	0.786	ND	12.4	0.57
6 (F2)	360	3,860	37	23.2	106	17	7.38	21.6	0.644	1.43	0.755
7 (P1)	59	1,120	13.3	2.54	19	2	5.8	16.6	0.424	2.37	ND


RPW	Alkalinity	Chloride	Oil	SO ₄ ²⁻	TDS	TSS
Test#	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
5 (N2)	1200	3,620	161.0	101	7,600	120
6 (F2)	539	6,030	113	194	11,700	508
7 (P3)	355	2,050	15.5	ND	4,460	122

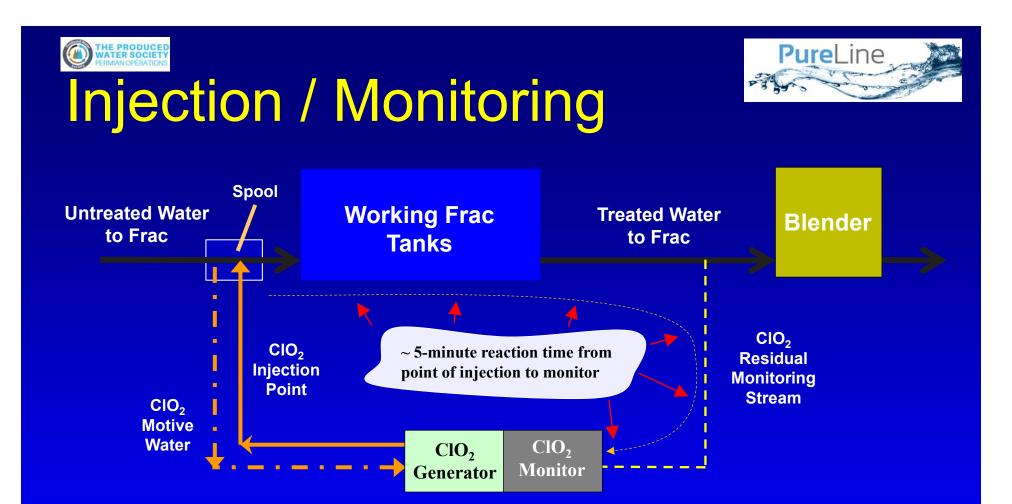
ClO₂ vs Residual Oil for Farmington PW

ClO₂ vs Residual Oil in Pinedale PW

CIO₂ On the Pad -Holistic Biocide Treatment

Water Source

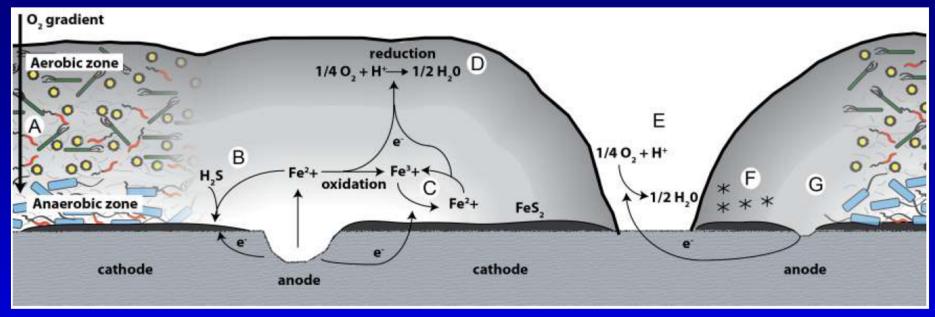
he


CIO₂ Injection Point

Consumpt

Working Tanks

Blender Chem Add


> CIO₂ Residual Reading Sample Loop -Residual Determines Dose

- Typical Fresh Water Dosage ~ 5 10 ppm (~ 3 5 ppm residual)
- Typical Produced Water Dosage ~ 10 150 ppm (every application is different)

Corrosion of Biofilm*

• (A) create anaerobic zones

HE PRODUCED

- (B) concentrate corrosive chemicals
- (C) concentrate ferrous ions
- (D) conduct electron away from surface
- (E) create differential aeration zones
- (F) bind corrosion promoters
- (G) disrupt passivating film

* Li, K., Whitfield, M. & Van Vliet, K. (2013). Beating the bugs: roles of microbial biofilms in corrosion. Corrosion Reviews, 31(3-6), 73-84

Eckert, R. B. "Emphasis on biofilms can improve mitigation of microbiologically influenced corrosion in oil and gas industry." Corrosion Engineering, Science and Technology 50.3 (2015): 163-168.