Water Management in Urban Corridors - Incentivizing Water Recycling and Discharge

Lisa Henthorne, Water Standard

Agenda

- Water Recycling and Discharging PW/Flowback
 - Is it important?
 - Challenges in urban corridors
- Drivers and Methods
 - Public perception
 - Regulations
 - Treatment requirements
 - How to assess options and solutions
 - Water management plan

How Much Water Are We Using?

- Consumption of 70-140 billion gallons of water per year for frac'ing operations, equivalent to 40-80 cities of 50,000 persons
- Per well consumption is rising based on shift to super fracs
- Recycling is slowly increasing, particularly in water-stressed regions, presently at 5-10% of demand

Scanlon, 2017

- Water usage accounts for 0.02% of U.S. renewable water resources
 - In 50 years we will have eliminated 1% of our country's entire water supply via SWD's
 - Local impact much greater

3

Surface and Groundwater Sourcing

- Considerations
 - Limited supply
 - Distance from site
 - Public perception
 - Disruption from trucking
 - Use of limited source supply
 - Risk of contamination of aquifers
 - Influence on the environment
 - Bakken operator: What difference does it make since that water was just going into the river?
 - Though limited in supply, freshwater is often inexpensive relative to treatment of PW/flowback

What are the Challenges?

- Cost of water increasing in some areas and negative public perception growing
- Long-term impacts on the environment and available water supply, especially in water-stressed regions
- Low costs of SWD disposal, often less than \$0.50/bbl
- Infrastructure required and water demands move and change
- Legal and regulatory challenges

World Resources Institute, 2014

Other Challenges

- Treatment for recycle cost-effective; treatment for discharge more expensive and limited data
- Salinity in some areas too high for cost-effective treatment for discharge
- SWD's being limited due to seismic issues

Permian, USGS PW database

Water Recycling – Benefits and Risks

Benefits

 Good stewards of water resources – community intangible benefits

Reduces water purchase and SWD disposal costs – water balance

Reasonable costs of \$0.15-60/bbl

Mobility can be reasonably integrated to accommodate shifting water demands

Risks

 Water quality, regulations in some states, water balancing demand to supply, right-of-ways/transportation

Discharge/Beneficial Reuse – Benefits and Risks

Benefits

- Excellent stewards of water resources public perception benefits
- Water footprint minimized
 environmental benefits
 and investor benefits
- Additional treatment can be added downstream of recycle treatment

Risks

- Contamination of rivers and streams
- Costs impacts can be significant look for alternate beneficial treatment options
- Schedule impact of permitting and piloting

Drivers and Guideposts

- Public perception
 - Urban corridors tend to have vocal, informed stakeholders
 - What's important: aesthetics, noise, air pollution, congestion, health impacts, environmental sensibilities, water resources, water pollution
- Regulations
 - State-by-state: options and requirements vary greatly
 - Local knowledge and access helpful in navigating the quagmire
 - Some states will provide preliminary assessment of discharge limitations
 - Where you discharge is critical

How To Move Forward

- Start with known data
- Meet with operations and stakeholders to assess needs
- Conduct options analysis
 - Water Management Plan methodology
 - Sourcing alternative sources over freshwater
 - Recycling adjacent operators (potential reg impact)
 - Specs and costs
 - Discharge discharge options and treatment
 - Other Blending for discharge, treating alternative impaired quality source for beneficial use or improved quality discharge, credits for alternative treatment

Workflow for WMP

- 1. Develop a Water Management Plan for asset (site and region specific)
- 2. Conduct water sampling/analyses (include BTEX and ammonia)
- 3. Evaluate economics, feasibility of options, and near/long-term impacts, including social and environmental, as well as sustainability goals
- 4. Work with state for permitting, if applicable
- 5. Develop treatment solution (often vendor-driven)

Conclusions

- Water management critical to economic production of hydrocarbons
- Current lack of knowledge of options
- Water Management Plan is the tool to address topic and result in best cost-effective long-term solution
- Technology is not the problem, but piloting may be required for discharge option
- Site and basins vary greatly in suitable treatment options, regulations and treatment costs
- We can greatly improve public perception around water issues related to unconventional production and protect the longterm value of our assets

Appendix

What's In It?

Typical Composition of Hydraulic Fracturing Fluid

Recycle Water Quality

- Treatment Requirements
 - Low Total Suspended Solids (TSS) typically 10-50 mg/L
 - Hydrocarbon content < 40 mg/L
 - 100% bacterial kill
 - Low iron, typically < 10mg/L</p>
 - pH 5.7-7.5

Disposal Management

- SWD Treatment Requirements
 - -TSS < 100 mg/L

Photo courtesy of Water Standard