

Extreme Microbes in Shales; A Potential Source for Enhanced Production

Yael Tucker, Ph.D.

PRODUCED WATER SOCIETY SEMINAR 2018

February 13, 2018

The Biological Part of the Equation

Microbial composition of water is considered when adding biocides to hydrofracture fluids, but often the consideration ends there.

However, several studies have found that produced water still contains living sulfur reducing bacteria, acid producing bacteria and other organisms.

Active Ingredient	SRB Efficacy	APB Efficacy	Aerobe Efficacy	Kill Speed	Length o Bacterial Control
Glutaraldehyde	****	***	****	****	****
Glut-Quat Combo	****	****	****	****	****
DBNPA	****	****	****	****	*
THPS	****	****	****	****	****
Bronopol	* * *	***	****	* * *	****
Dazomet	*	*	*	*	***
ADBAC	****	****	****	****	**
DDAC	****	****	****	****	**
TTPC	****	****	****	****	**
Halogenated Oxidizers	****	****	****	****	*

Biocide Selection Guide - The DOW Chemical Company

http://msdssearch.dow.com/PublishedLiteratureDOWCOM/dh_08b6/0901b803808b64bc.pdf?filepath=microbial/pdfs/noreg/253-02697.pdf&fromPage=GetDoc

Denise M. Akob, Isabelle M. Cozzarelli, Darren S. Dunlap, Elisabeth L. Rowan, Michelle M. Lorah, Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells, Applied Geochemistry, Volume 60, September 2015, Pages 116-125,

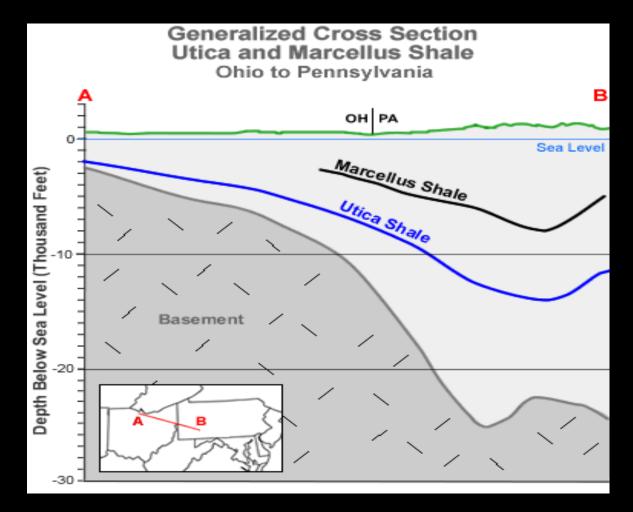
Initial Study

Is something down there?

Different Samples Tested

Marcellus shale (17): •Average depth- 5,000-8,000 ft. •Generally dry gas with high thermal maturity

Utica Shale (1):

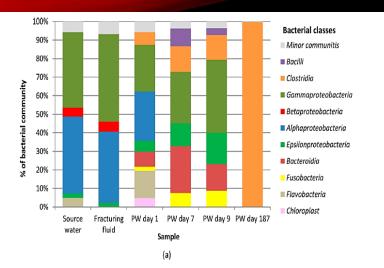

3-7,000 ft. below MarcellusContains both Oil and Gas (low conodont alteration index)

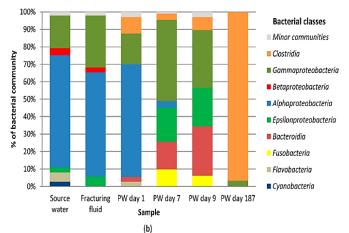
Lower Huron Shale (3):

•3,000 ft. below surface•Some oil but mostly just natural gas

Coal Samples (43):

Depths ranged from 300-3,000 ft.Higher permeability




<u>http://geology.com/articles/utica-shale/</u>
 <u>http://geology.com/articles/marcellus-shale.shtml</u>

Initial Study

Marcellus Shale

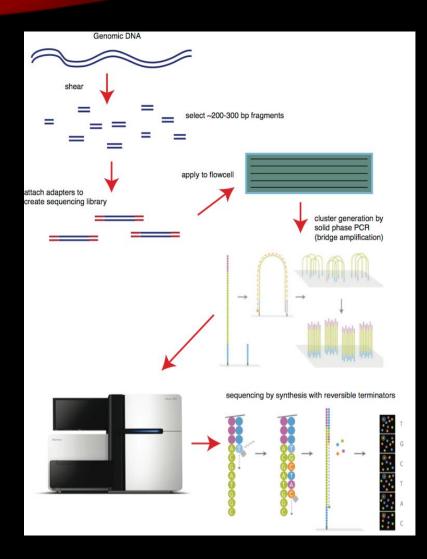
Microbiological Marcellus Produced Water Studies

Mohan et al. (2013). Microbial community changes in hydraulic fracturing fluids and produced water from shale gas extraction. Environ Sci. Technology, 47(22), 13141-13150.

Cluff,et al (2014). Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells. Environ Sci Technology

Akob et al. (2015) Organic and inorganic composition and microbiology of produced waters from Pennsylvania shale gas wells. Applied Geochemistry, 60, 116-125

Found:


NONE

- H2S producers Halanerobium, Vibrio, Shewanella, and Thermoanaerobacter.
- Acid producers- Halanerobium , Alphaproteobacteria

Utica and Lower Huron Shale Microbiological Studies:

Figure 1. Relative abundance of bacterial 16S rRNA gene sequences in source water, fracturing fluid, and produced water (PW) day 1, 7, 9, and 187 samples from (a) tag-encoded pyrosequencing (b) clone libraries. The RDP Classifier tool was used to assign sequences to taxonomical classes at a cutoff of 80. For both techniques, classes that constituted <2% of the bacterial community in the sample are termed minor communities. We were unable to amplify DNA from synthetic oil-based drilling mud.

Detection Options

Culture Methods

- Only captures 1% population
- Time consuming and biased
- Getting live cells out of rock samples is challenging...

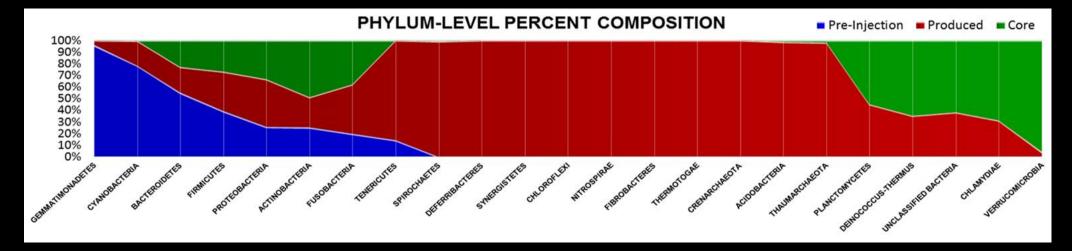
Next Generation Sequencing

- Faster results than plating
- Captures entire population

DNA Extraction

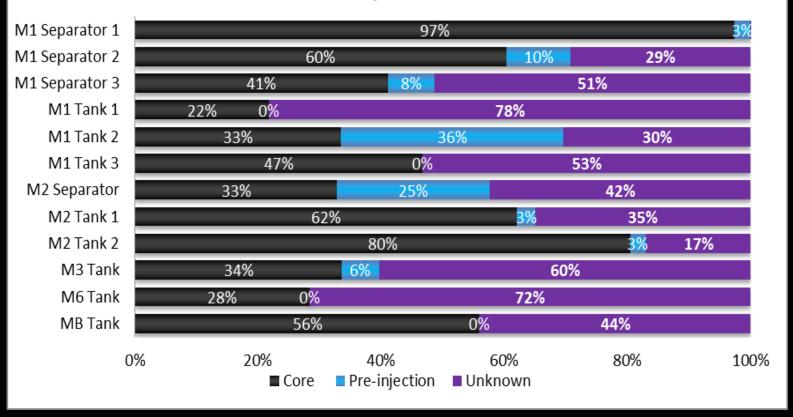
Use a kit... but it's not that easy...

- Which kit?
- How much water?
- How much rock?
- Is there such a thing as too much?

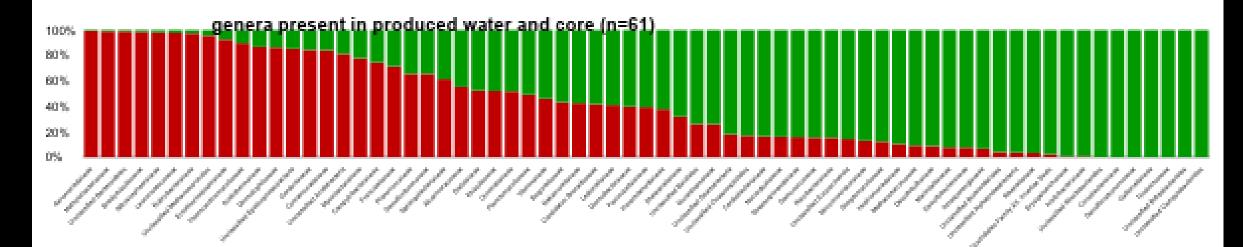


Microorganisms in Marcellus Shale

Well	Age of Well	Sample Type	OTU	Total Sequences	Total Mothanogone		
					Methanogens		
Pre- Injection	n						
MB	-	Before Injection	212	25040	0%		
Produced FI	uid Tank						
MB	139	Produced	221	32621	0.02%		
	210	Produced	231	40739	0.01%		
M1	689	Produced	198	36897	0%		
	787	Produced	196	38186	0%		
M2	220	Produced	233	22747	0.14%		
IVIZ	787	Produced	191	74234	0.15%		
M3	230	Produced	159	21145	0.01%		
M6	1825	Produced	221	23151	0%		
Gas-Water	Separator						
	661	Produced	250	317056	17%		
M1	689	Produced	160	78568	0%		
	787	Produced	204	18937	0%		
M2	787	Produced	158	23905	0%		
Shale Cores							
Core 1	-	Core	289	23943	0.01%		


Microorganisms Native to Marcellus Shale?

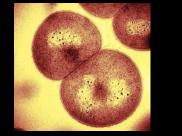
GENUS-LEVEL PERCENT COMPOSITION 100% 90% 80% 70% 60% 68 71 61 50% 40% 30% 20% 10% 0% 61 71 91 101 111 121 131 141 151 161 171 181 191 201 211


Predicted Source of Microorganisms


SourceTracker % Composition of Produced Fluids

Knights, Dan, et al. "Bayesian community-wide culture-independent microbial source tracking." Nature methods 8.9 (2011): 761-763.

Microorganisms Native to Marcellus Shale?


Acidobacterium capsulatum

- Often found in coal mines
- Tolerate low pH found in produced waters (possibly subsurface)
- Utilize iron metabolism
 that produces ferric iron

Deinococcus radiodurans

- Most notable for high tolerance to radioactivity
- Tolerate high levels of acid, cold and even vacuum

Deinococcus geothermalis

- Thermophillic radiophile
- Thrives at temperatures between 45-50° C
- Engineered to consume radioactive waste

Methanosarcina Acetivorans

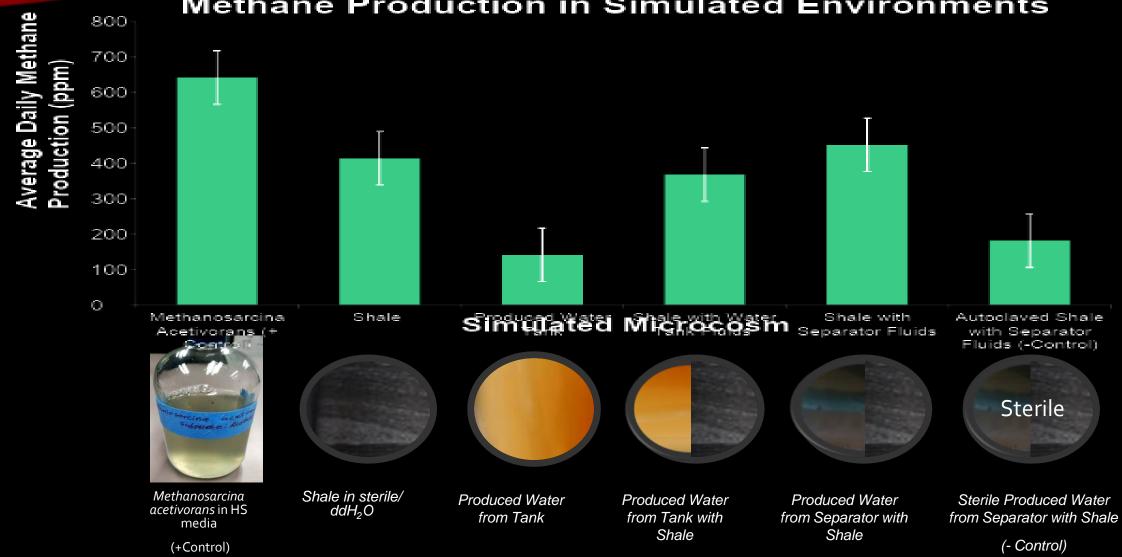
- Methane producing
 Microbe
- Can convert CO2, acetate, methanol and CO into methane
- Thrives in iron sulfide.

What is a Methanogen?

Methanogens microorganisms from the kingdom Archaea.

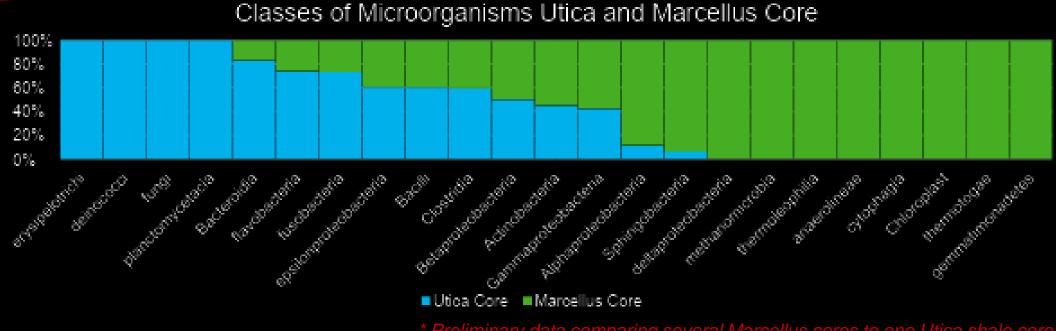
Why do we care about them?

Methanogens produce methane which is a large part of natural gas.


Work faster than geologic processes.

 $CO_2 + H_2 \rightarrow CH_4 + H_2O$ $CH_3COOH_{(acetate)} \rightarrow CO_2 + CH_4$

Are They Alive and Active?

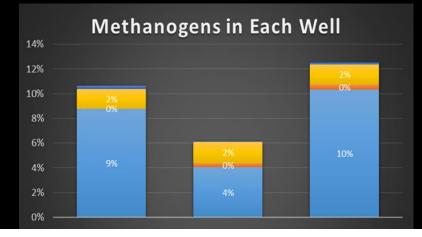

Methane Production in Simulated Environments

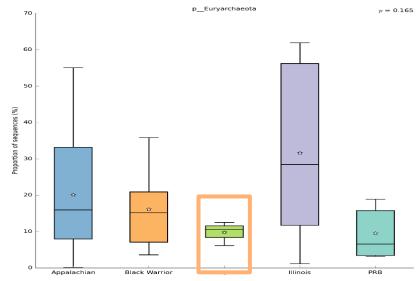
Utica Shale

Microorganisms in Utica and Marcellus Cores

* Preliminary data comparing several Marcellus cores to one Utica shale core

Notable organisms found in Marcellus cores:

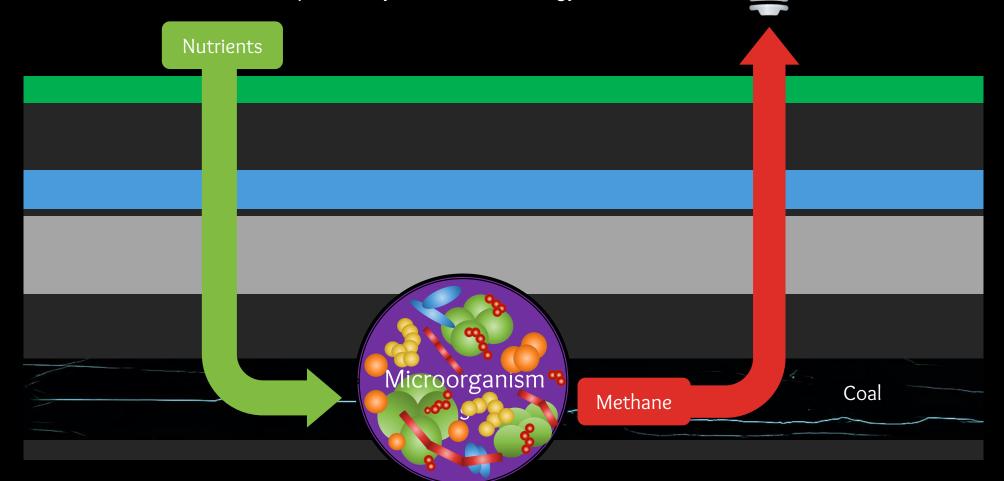

Deltaproteobacteria - includes sulfate-reducing bacteria (Desulfobacterales, Desulfovibrionales and Syntrophobacterales.) Alphaproteobacteria - Acid producer Pseudomonas and Acinetobacter - Biofouler Methanomicrobia - can produce methane.



Lower Huron Shale

Lower Huron Shale

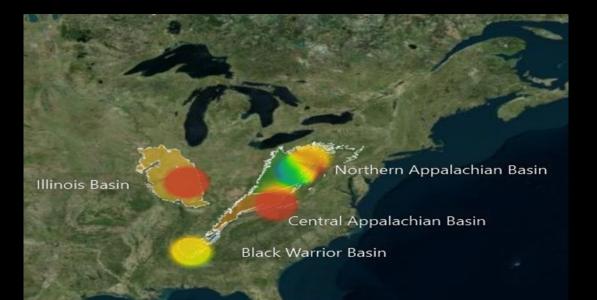
Phylum	1	2	3	Description
Firmicutes	6%	21%	22%	Many produce spores that can survive extreme conditions.
Proteobacteria	78%	33%	21%	Broad group with a wide range of genera and metabolisms (from Nitrogen to Oil)
Actinobacteria	1%	28%	16%	Soil dwelling organisms that can decompose organic matter and fix nitrogen.
Euryarchaeota	11%	6%	12%	Methane producing microorganisms.
Fusobacteria	0%	2%	11%	Gain energy by fermentation of carbohydrates and amino acids. Can be key for biofilm production.
Bacteroidetes	1%	4%	9%	Widely distributed organisms in the environment, sediments and soil that can be crucial for organic matter breakdown.
Chloroflexi	0%	1%	3%	Include microbes that use halogenated organics as energy sources.
Tm7	0%	0%	2%	Uncultivated phylum found in soil samples, can take up a wide variety of carbon sources.
Synergistetes	1%	2%	2%	Can produce biogas in anaerobic digesters.
Thermotogae	0%	о%	1%	Produce hydrogen. Required for methane production with CO ₂ .
Орэ	0%	0%	1%	Uncultivated microorganisms often found in hydrothermal vents. Also, commonly found in the deep subsurface.
Acidobacteria	0%	о%	0%	Only phylum found in all caves.
Spirochaetes	0%	0%	0%	Anaerobic organisms that can digest cellulose and other plant polysaccharides.



US Coalbed Methane

Coal Research Purpose

To utilize native microorganisms in "unmineable" coals or coal bed methane sites to produce extra methane and recover previously unavailable energy.


Summary of Results

Wide variation was seen between samples of the same basin even when they were very close together.

Between 0-61% methanogens were found in the samples assessed.

This could suggest faster rates of production possible than previously expected.

No significant numbers of methanotrophs (methane consumers) found in any of the wells.

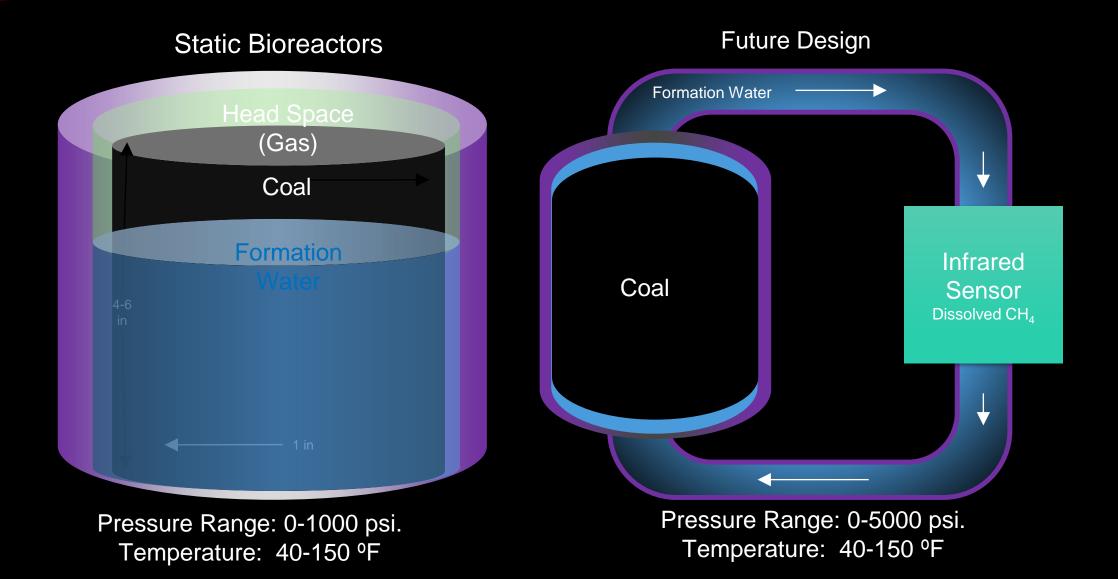
Production Correlations Across Basins									
Location	Appalachian			Black Warrior			Illinois		
Production (MCF)	Cumm	Avg	Max	Cumm	Avg	Max	Cumm	Avg	Max
Euryarchaeota	0.17	0.29	0.12	0.93	0.87	0.92	-0.48	-0.33	-0.06
MCG	-0.02	-0.06	0.24	0.17	0.02	0.32	0.66	0.85	0.98
Methanobacteriales	0.60	0.67	0.46	0.96	0.91	0.94	-0.23	0.02	0.35
Methanococcales	0.72	0.70	0.54	0.23	0.08	0.34	-0.37	-0.46	-0.49
Methanomicrobiales	-0.41	-0.33	-0.36	0.56	0.59	0.45	0.01	-0.09	-0.19
Methanosarcinales	-0.31	-0.06	-0.12	-0.05	-0.20	0.11	-0.07	-0.10	-0.18
E2	0.32	0.54	0.45	0.04	-0.10	0.18	-0.15	-0.15	-0.16

Production Correlations On Phylum Level									
Location	Appalachian			Black Warrior			Illinois		
Production	Cumulative	Average	Maximum	Cumulative	Average	Maximum	Cumulative	Average	Maximum
[Thermi]	0.45	0.58	0.42	-0.48	-0.34	-0.63	-0.28	-0.38	-0.46
Acidobacteria	0.79	0.81	0.68	0.93	0.98	0.81	-0.07	0.22	0.61
Actinobacteria	0.01	0.11	-0.15	-0.67	-0.60	-0.73	-0.08	-0.17	-0.28
Bacteroidetes	-0.07	0.11	0.22	-0.34	-0.43	-0.19	-0.02	0.01	0.07
Chlorobi	-0.36	-0.50	-0.34	0.22	0.23	0.23	0.29	0.35	0.33
Chloroflexi	0.45	0.55	0.31	-0.38	-0.40	-0.29	0.49	0.64	0.72
Crenarchaeota	-0.09	-0.04	0.14	0.91	0.94	0.81	0.37	0.42	0.39
Cyanobacteria	-0.39	-0.13	-0.06	0.00	-0.25	0.26	-0.13	-0.20	-0.29
Elusimicrobia	-0.24	-0.11	-0.20	-0.12	-0.10	-0.11	-0.14	-0.18	-0.25
Euryarchaeota	0.18	0.29	0.13	0.93	0.87	0.92	-0.48	-0.33	-0.06
Firmicutes	-0.35	-0.50	-0.52	0.34	0.12	0.57	0.29	0.06	-0.28
Fusobacteria	-0.20	-0.30	-0.42	-0.13	-0.33	0.09	0.07	-0.02	-0.09
Gemmatimonadetes	0.62	0.74	0.61	-0.48	-0.34	-0.63	0.17	0.05	-0.09
Hyd24-12	0.48	0.36	0.28	0.99	0.98	0.92	0.61	0.68	0.67
Lentisphaerae	-0.01	0.02	0.23	0.93	0.99	0.81	-0.16	-0.24	-0.28
Nitrospirae	-0.53	-0.54	-0.50	-0.15	-0.30	0.03	-0.26	-0.32	-0.39
OD1	-0.36	-0.48	-0.43	-0.15	-0.32	0.05	-0.03	-0.12	-0.25
OP1	0.58	0.74	0.55	-0.06	-0.21	0.11	-0.16	-0.09	0.00
OP11	-0.13	-0.05	-0.23	-0.15	-0.30	0.03	-0.31	-0.33	-0.33
OP3	-0.16	-0.06	-0.22	-0.15	-0.30	0.03	0.95	0.89	0.65
OP9	0.83	0.82	0.68	0.94	0.92	0.90	-0.06	0.24	0.63
Planctomycetes	0.02	-0.19	-0.05	0.93	0.99	0.81	0.79	0.79	0.64
Proteobacteria	-0.02	-0.03	0.13	-0.65	-0.54	-0.67	0.42	0.27	-0.03
SAR406	-0.18	-0.39	-0.40	0.93	0.99	0.81	0.04	0.23	0.50
Spirochaetes	0.29	0.44	0.23	0.07	0.15	0.02	0.56	0.60	0.59
Synergistetes	0.28	0.43	0.23	0.45	0.57	0.26	0.03	-0.05	-0.16
Tenericutes	0.06	-0.03	0.27	-0.35	-0.25	-0.40	0.04	-0.02	-0.13
Thermotogae	0.70	0.66	0.59	0.39	0.55	0.17	0.17	0.45	0.77
TM7	-0.49	-0.31	-0.36	0.71	0.63	0.74	0.06	-0.02	-0.09
Verrucomicrobia	0.07	0.08	-0.01	0.93	0.95	0.83	-0.08	0.21	0.60
WPS-2	-0.45	-0.19	-0.22	-0.15	-0.30	0.03	-0.14	-0.18	-0.25
WS1	-0.32	-0.46	-0.40	0.02	-0.12	0.18	-0.06	0.23	0.62
WWE1	0.84	0.76	0.62	0.94	0.97	0.84	0.93	0.87	0.63

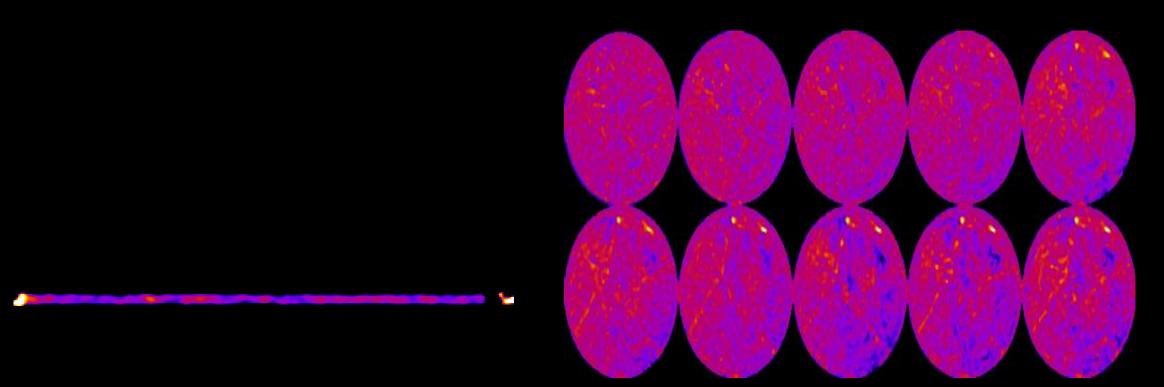
Production Correlations

Appalachian Basin

Methanogens:Methanobacteriales (0.60, 0.67, 0.46
Methanococcales 0.72,0.70, 0.54)Acidobacteria:Soil microorganisms with versatile
carbohydrate metabolismsThermatogae:Produce hydrogen for CO2 conversion


Black Warrior Basin

Methanogens: Methanobacteriales (.96, .91, .94) Verrucomicrobium: facultative anaerobic fermenters Acidobacteria: Soil microorganisms with versatile carbohydrate metabolisms

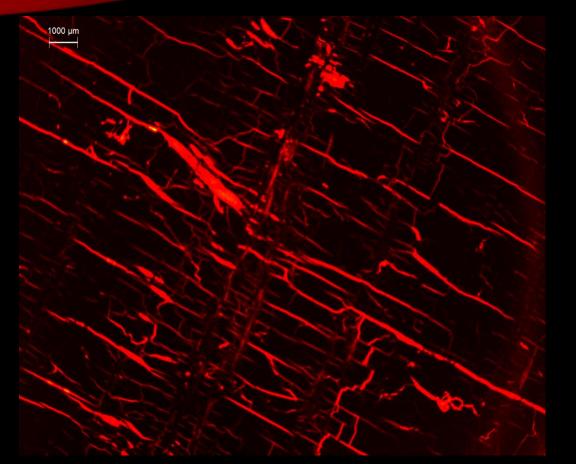

Illinois Basin

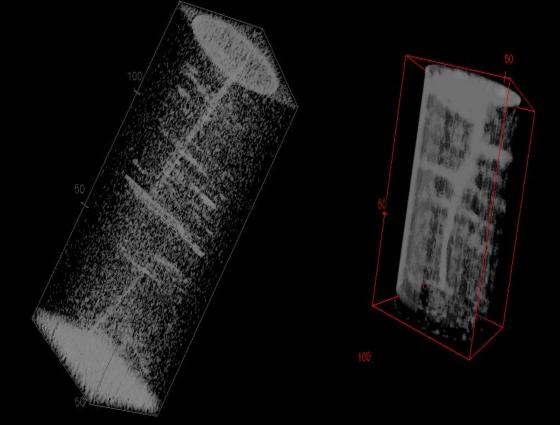
Methanogens: Only MCG ((.66,.85, .88) small population) Thermatogae: Produce hydrogen for CO2 conversion Spirochaetes: Digest cellulose WWE1: known to remove CO2 and H2 from formate

Tests at In-Situ Conditions

Nutrient Delivery Tests

2' by 6' in Coal Core Sample Scanned using a Medical CT Scanner During Impregnation by KI Tracer to investigate potential nutrient transport mechanisms. Maximum resolution is about 400 micron.


Conclusions


- We have found that nearly all samples (all but the one Utica core) contain methane producing microorganisms that are capable of helping in natural gas recovery.
- Not only are these organisms detectable, but they are viable and able to produce methane even after extraction using only the compounds naturally found after drilling a well.
- As expected, microbial composition varies significantly across samples, locations, and types of sediments.
- However, all samples studied in this research contained populations of microorganisms that may be useful for natural gas recharge.
- Each type of sample contained its own microorganisms with the capability to break down complex hydrocarbons into smaller compounds useful for methanogens.
- In addition, all samples microorganisms capable of producing hydrogen gas and other compounds required for various metabolic pathways of methanogenesis.
- While natural rates may be slow, there is a possibility that we could enhance rates to an economically viable level.

Therefore, it appears that injection of new microorganisms would be unnecessary for biogenic production of methane in any of the sampled wells.

From CT injection tests- It appears that nutrient injection could deliver nutrients across samples.

Questions?

Polished section of coal impregnated with rhodaminedyed, fluorescent epoxy, which makes macerals, cleats and microcleats visible.

WV Coal Core Samples Scanned with a Medical CT scanner after KI impregnation.

← Drill core, Republic Energy Mine, Kanawha Co., WV

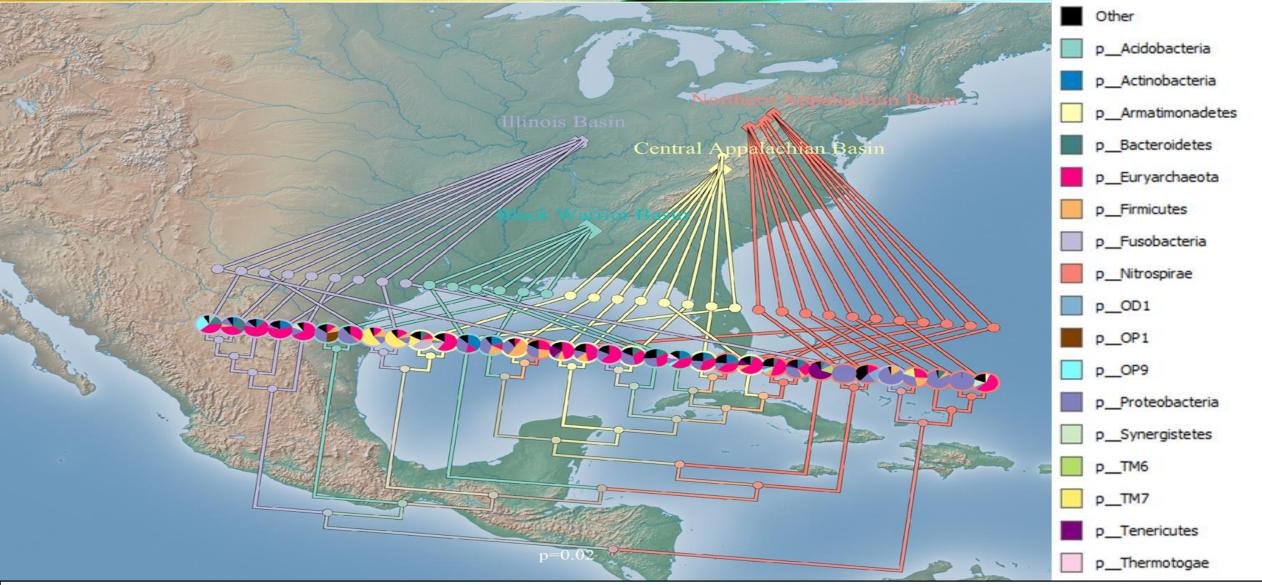
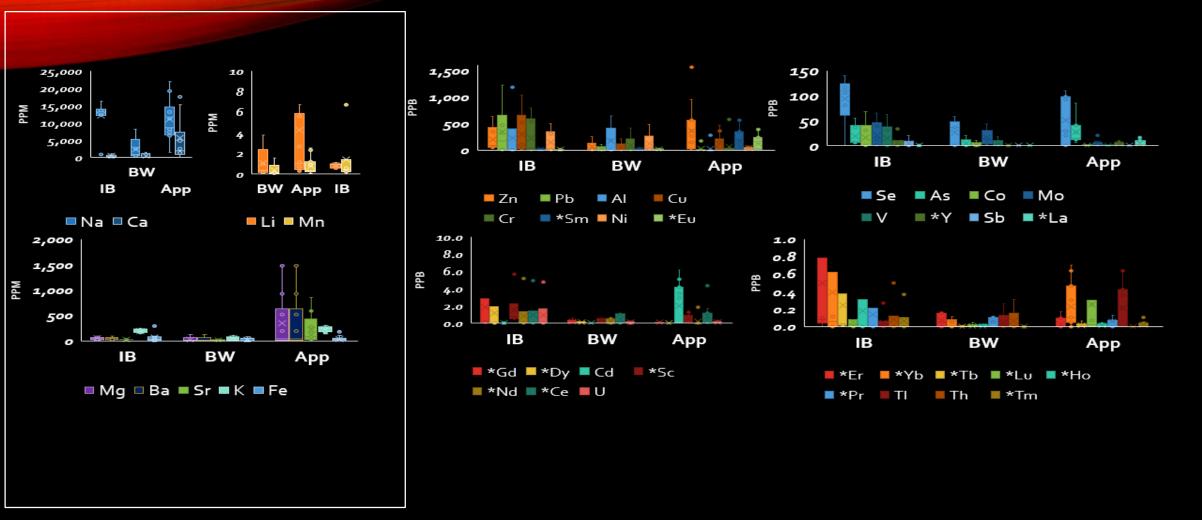



Fig. 1- Sequencing Data of Basins from the Eastern US: Map shows the microbial composition of samples from different locations in the pie graphs on the tree. Colors of circle outlines and lines indicate the basin from which the sample originated. Unweighted UPGMA unifrac tree suggests that changes in microbial communities can be attributed geographic relationships at a (p < 0.05).

Elemental Composition Of CBM Water

Chemical Concentrations of Elements In Produced Water Across Basins ICP-MS results for produced water samples across the different basins. Part A has elements with high concentrations in PPM values. Part B has elements with lower concentrations in PPB values. The basins are denoted as Illinois Basin: IB, Black Warrior Basin: BW, and Appalachian Basin: App. Elements with an asterisk (*) are rare earth elements.